Return to search

Une approche fréquentielle pratique pour l'échantillonnage adaptatif en espace image

En synthèse d'images réalistes, l'intensité finale d'un pixel est calculée en estimant une intégrale de rendu multi-dimensionnelle. Une large portion de la recherche menée dans ce domaine cherche à trouver de nouvelles techniques afin de réduire le coût de calcul du rendu tout en préservant la fidelité et l'exactitude des images résultantes. En tentant de réduire les coûts de calcul afin d'approcher le rendu en temps réel, certains effets réalistes complexes sont souvent laissés de côté ou remplacés par des astuces ingénieuses mais mathématiquement incorrectes.

Afin d'accélerer le rendu, plusieurs avenues de travail ont soit adressé directement le calcul de pixels individuels en améliorant les routines d'intégration numérique sous-jacentes; ou ont cherché à amortir le coût par région d'image en utilisant des méthodes adaptatives basées sur des modèles prédictifs du transport de la lumière.

L'objectif de ce mémoire, et de l'article résultant, est de se baser sur une méthode de ce dernier type[Durand2005], et de faire progresser la recherche dans le domaine du rendu réaliste adaptatif rapide utilisant une analyse du transport de la lumière basée sur la théorie de Fourier afin de guider et prioriser le lancer de rayons. Nous proposons une approche d'échantillonnage et de reconstruction adaptative pour le rendu de scènes animées illuminées par cartes d'environnement, permettant la reconstruction d'effets tels que les ombres et les réflexions de tous les niveaux fréquentiels, tout en préservant la cohérence temporelle. / In realistic image synthesis, a pixel's final intensity is computed by estimating a multi-dimensional shading integral. A large part of the research in this domain is thus aimed at finding new techniques to reduce the computational cost of rendering while preserving the fidelity and correctness of the resulting images. When trying to reduce rendering costs to approach real-time computation, complex realistic effects are often left aside or replaced by clever but mathematically incorrect tricks.

To accelerate rendering, previous directions of work have either addressed the computation of individual pixels by improving the underlying numerical integration routines; or have sought to amortize the computation across regions of an image using adaptive methods based on predictive models of light transport.

This thesis' - and resulting paper's - objective is to build upon the latter of the aforementioned classes of methods[Durand2005], and foray into fast adaptive rendering techniques using frequency-based light transport analysis to efficiently guide and prioritize ray tracing. We thus propose an adaptive sampling and reconstruction approach to render animated scenes lit by environment lighting and faithfully reconstruct all-frequency shading effects such as shadows and reflections while preserving temporal coherency.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/12834
Date10 1900
CreatorsDubouchet, Renaud Adrien
ContributorsNowrouzezahrai, Derek
Source SetsUniversité de Montréal
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0021 seconds