Recent research, that has been focused on recognition memory, has revealed that two processes contribute to recognition of previously encountered items: recollection and familiarity (Aggleton & Brown, 1999; Eichenbaum, 2006; Eichenbaum, Yonelinas, & Ranganath, 2007; Rugg & Yonelinas, 2003; Skinner & Fernandes, 2007; Squire, Stark, & Clark, 2004; Wixted, 2007a; Yonelinas, 2001a; Yonelinas, 2002). The findings of neural correlates of recollection and familiarity lead to the assumption that there are different brain regions activated in either process, but there are, to the best of my knowledge, no studies assessing how these brain regions are working together in a recollection or a familiarity network, respectively. Additionally, there are almost no studies to date, which directly searched for overlapping regions. Therefore, in study I of the current thesis, brain regions associated to both recognition processes are searched investigated. Additionally, a connectivity analysis will search for functional correlated brain activations that either build a recollection or a familiarity network.
It is undoubtable that the Brain Derived Neurotrophic Factor (BDNF) is strongly involved in synaptic plasticity in the hippocampus (Bramham & Messaoudi, 2005) and there is evidence that a genetic variant of this neurotrophin (BDNF 66Met) is related to poorer memory performance (Egan, et al., 2003). Therefore, in study II of the current thesis, the effect of BDNF Val66Met on recollection and familiarity performance and related brain activations is investigated.
Finally, one could summarize, that serotonin, like BDNF, is strongly involved in brain development and plasticity as well as in learning and memory processes (Vizi, 2008). More precisely, there is evidence for alterations in the structure of brain regions, which are known to be involved in emotional memory formation and retrieval, like amygdala and hippocampus (Frodl, et al., 2008; Munafo, Brown, & Hariri, 2008; Pezawas, et al., 2005). One study found an slight epistatic effect of BDNF and 5-HTTLPR on the grey matter volume of the amygdala (Pezawas, et al., 2008). Therefore, in study III, it is investigated if such an interaction effect could be substantiated for the amygdala and additionally revealed for the hippocampus.
The results of the current thesis allow further comprehension of recollection, hence episodic memory, and point to a special role of the BDNF in temporal and prefrontal brain regions. Additionally, the finding of an epistatic effect between BDNF and serotonin transporter function point to the need of analyzing interactions between genes and also between genes and environmental factors which reveals more information than the study of main effects alone.
In conclusion, analyzing behavioral and neural correlates of episodic memory reveal allowed insights in brain functions that may serve as guideline for future studies in clinical populations with memory deficits, including susceptibility factors such as good or bad environment, as well as promising gene variants that influence episodic memory.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-39423 |
Date | 27 July 2010 |
Creators | Dörfel, Denise |
Contributors | Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Dr. Anke Karl, Prof. Dr. Clemens Kirschbaum, Dr. Anke Karl |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0026 seconds