• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 13
  • 3
  • Tagged with
  • 29
  • 22
  • 18
  • 13
  • 11
  • 11
  • 9
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A mouse model for genetic deletion of presynaptic BDNF from adult hippocampal mossy fiber terminals / Mausmodell für genetische Deletion von präsynaptischem BDNF aus adulten hippokampalen Moosfaserterminalen

Sasi, Manju January 2020 (has links) (PDF)
Brain-derived neurotrophic factor (BDNF) is a modulator and mediator of structural and functional plasticity at synapses in the central nervous system. Despite our profound knowledge about the synaptic function of BDNF at synapses, it is still controversially discussed whether synaptic BDNF acts primarily from pre- or postsynaptic sites. In the central nervous system, several studies show that mossy fiber (MF) projections formed by hippocampal granule neurons store the highest amount of BDNF. However, immunofluorescence and RNA labelling studies suggest that MF BDNF is primarily produced by granule neurons. Multiple other studies prefer the view that BDNF is primarily produced by postsynaptic neurons such as CA3 pyramidal neurons. Here, we question whether the BDNF, which is stored in the mossy fiber synapse, is primarily produced by granule neurons or whether by other cells in the MF-CA3 microcircuit. After standardization of immunolabelling of BDNF, confocal imaging confirmed the localization of BDNF in presynaptic MF terminals. This anterograde location of synaptic BDNF was also found in distinct regions of the fear and anxiety circuit, namely in the oval nucleus of the bed nucleus stria terminals (ovBNST) and in the central amygdala. To find out whether the presynaptic BDNF location is due to protein translation in the corresponding presynaptic dentate gyrus (DG) granule neuron, we developed and characterized a mouse model that exhibits BDNF deletion specifically from adult DG granule neurons. In this mouse model, loss of presynaptic BDNF immunoreactivity correlated with the specific Creactivity in granule neurons, thus confirming that MF BDNF is principally released by granule neurons. After BDNF deletion from granule neurons, we observed more immature neurons with widely arborized dendritic trees. This indicated that local BDNF deletion also affects the local adult neurogenesis, albeit Cre-mediated BDNF deletion only occur in adult granule neurons. Since BDNF is a master regulator of structural synaptic plasticity, it was questioned whether it is possible to visualize presynaptic, synapse-specific, structural plasticity in mossy fiber synapses. It was established that a combination of Cre-techniques together with targeting of GFP to membranes with the help of palmitoylation / myristoylation anchors was able to distinctly outline the synaptic structure of the BDNF-containing MF synapse. In summary, the mouse model characterized in here is suited to investigate the synaptic signalling function of presynaptic BDNF at the mossy fiber terminal, a model synapse to investigate microcircuit information processing from molecule to behaviour. / Der neurotrophe Wachstumsfaktor BDNF (brain-derived neurotrophic factor) ist ein Regulator und Vermittler von struktureller und funktionaler Plastizität in Synapsen des zentralen Nervensystems. Trotz des umfassenden Wissens über die synaptische Funktion von BDNF an Synapsen wird immer noch kontrovers diskutiert, ob synaptisches BDNF vorrangig von der prä- oder von der postsynaptischen Seite her agiert. Zahlreiche Studien zeigen, dass die größten BDNF Mengen des Zentralnervensystems in den Projektionen der hippocampalen Körnerzellen, den sogenannten Moosfasern (MF), enthalten sind. Während manche Studien basierend auf der Markierung von RNA und Immunofloureszenz nahelegen, dass MF BDNF in erster Linie von Körnerzellen produziert wird, bevorzugen zahlreiche andere Studien wiederum die Sicht, dass BDNF primär von postsynaptischen Neuronen wie beispielsweise den CA3 Pyramidenneuronen gebildet wird. In dieser Arbeit wurde die Fragestellung untersucht, ob das BDNF, welches in den Moosfasersynapsen enthalten ist, in erster Linie von Körnerzellen hergestellt wird, oder ob es hauptsächlich von anderen Zellen aus dem MF-CA3 Mikronetzwerk gebildet wird. Nachdem eine Standardisierung der Immunfluoreszenzmarkierung von BDNF etabliert wurde, konnte anhand von konfokaler Bildgebung die Lokalisierung von BDNF in den präsynaptischen MF Terminalen bestätiget werden. Diese anterograde Lokalisierung synaptischen BDNFs konnte außerdem in zwei weiteren Regionen des Furcht- und Angstnetzwerkes, genauer gesagt im ovalen Kern des bed nucleus stria terminalis (ovBNST) und in der zentralen Amygdala, nachgewiesen werden. Um Herauszufinden, ob die präsynaptische Lokalisation von BDNF von der Proteintranslation in den zugehörigen präsynaptischen Körnerzellen des Gyrus Dentatus abhängig ist, entwickelten und charakterisierten wir ein Mausmodel , welches die spezifische Deletion von BDNF aus den ausgereiften Körnerzellen des Gyrus Dentatus ermöglicht. In diesem Mausmodell korrelierte der Verlust präsynaptischer BDNF Immunreaktivität mit der spezifischen Cre-Aktivität in Körnerzellen, was bestätigt, dass MF BDNF hauptsächlich von den Körnerzellen ausgeschüttet wird. Nach BDNF Deletion aus den Körnerzellen konnten mehr unreife Neurone mit sich weit verzweigenden, dendritischen Strukturen beobachtet werden. Dies weist darauf hin, dass die lokale Deletion von BDNF auch die lokale adulte Neurogenese beeinflusst, obwohl die Crevermittelte BDNF Deletion nur in adulten Körnerzellen stattfindet. Da BDNF ein Hauptregulator von struktureller synaptischer Plastizität ist, kam die Frage auf, ob es möglich ist, diese präsynaptische, synapsenspezifische strukturelle Plastizität in Moosfasersynapsen zu visualisieren. Es wurde festgestellt, dass eine Kombination aus der Cre- Technik zusammen mit der gezielten Verankerung von GFP in der Zellmembran durch Palmitoylierungs-/Myristoylierungsmotive in der Lage ist, die synaptische Struktur von BDNF enthaltenden MF Synapsen darzustellen. Zusammenfassend konnte gezeigt werden, dass das hier entwickelte und charakterisierte Mausmodell dafür geeignet ist, die synaptische Signalfunktion präsynaptischen BDNFs in der Moosfaserterminale, einer Modellsynapse für die Erforschung der Informationsverarbeitung in Mikronetzwerken vom Molekül bis hin zum Verhalten, zu untersuchen.
2

Bildgebung Aktiver Zonen : Lichtmikroskopische Methoden zur Darstellung präsynaptischer AktiverZonen in lebendem und fixiertem Gewebe / Imaging active zones : Approaches for visualizing active zones with light microscopy in living and fixed tissue

Pauli, Martin January 2012 (has links) (PDF)
Ziel dieser Arbeit war es, strukturelle Veränderungen präsynaptischer Aktiver Zonen als mögliches Korrelat synaptischer Plastizität zu detektieren. Damit soll die Hypothese getestet werden, dass strukturelle Plastizität Aktiver Zonen eine zentrale Rolle bei der Informationsverarbeitung im Gehirn und bei Lern- und Gedächtnisprozessen spielt. Dazu war es notwendig Methoden zu etablieren, die die strukturelle Analyse Aktiver Zonen und deren Veränderung in vitalem Gewebe ermöglichen. Um die Untersuchungen in einem Gewebe mit plastischen Eigenschaften durchzuführen, wurden Methoden zur Herstellung organotypischer hippocampaler Hirnschnittkulturen etabliert, da hippokampale Moosfasersynapsen ausgeprägte präsynaptische Plastizität aufweisen (Bliss und Collingridge, 1993). Durch Einzelzellelektroporation wurde es möglich, individuelle Neurone mit Transgenen zur Markierung der gesamten Zelle (DsRed) und synaptischer Substrukturen wie Aktive Zonen (z.B.: GFP-CAST, einem Fluorophor-markierten AZ-Protein) zu transfizieren. Mit konfokaler Bildgebung transfizierter Zellen konnten strukturierte Anreicherungen von GFP-CAST in Moosfaserboutons dargestellt werden. Konfokale Bildgebung von Doppelimmunfluoreszenzfärbungen zur detaillierten Analyse der Proteinlokalisation zeigte ein diffraktionsbedingtes Auflösungsdefizit, das auch durch die Anwendung von STED-Mikroskopie nicht zufriedenstellend gelöst werden konnte. Um eine präzise Karte synaptischer Proteine zu erstellen, wurde hochauflösende Mikroskopie (dSTORM) mit einer lateralen räumlichen Auflösung von 20 nm etabliert. Dabei erwiesen sich die ausgeprägte Plastizität, die hohe Dichte an Aktiven Zonen und die variable Gestalt der Boutons im hippokampalen Präparat als problematisch. Aus diesem Grund wurde die elektronenmikroskopisch gut charakterisierte neuromuskuläre Endplatte mit ihrer symmetrischen molekularen Struktur als Präparat für dSTORM verwendet. An der Endplatte konnte die molekulare Organisation der Aktiven-Zonen-Proteine Piccolo und Bassoon dargestellt werden. Zudem konnten erstmals die Mündungen postsynaptischer Falten lichtmikroskopisch aufgelöst werden. So gelang es Werkzeuge zu etablieren, die mit lichtmikroskopischen Methoden die Darstellung der Architektur Aktiver Zonen mit molekularer Auflösung ermöglichen. Die Herausforderung wird es sein, diese neue Dimension in funktionellem Kontext zu nutzen. Die experimentellen Grundlagen dazu wurden durch eine spezielle Badkammer und die Etablierung von Rollertubekulturen bereits gelegt. Dabei ermöglicht dSTORM die Adressierung quantitativer Fragestellungen bis hin zur Bestimmung der Molekülanzahl. / The aim of this work was to visualize structural changes of presynaptic active zones (AZ) as a putative correlate of synaptic plasticity in the brain, thereby testing the hypothesis, that structural plasticity is a key player in information processing, learning and memory. Therefore it was necessary to establish methods that allowed the structural analysis of active zones and their changes in living tissue. To do these investigations in a tissue with plastic characteristics, organotypic hippocampal slice cultures have been established, due to distinct presynaptic plasticity of hippocampal mossy fibre boutons (Bliss and Collingridge, 1993). With single cell electroporation it became possible to mark transgenetically individual neurons (DsRed) and synaptic substructures like active zones (GFP-CAST, a fluorophor labelled AZ- Protein). By imaging transfected neuron using confocal light microscopy, discrete accumulations of GFP-CAST were found in mossy fibre boutons. Aiming to analyse protein localisation in detail, confocal imaging of double-immunofluorescence staining revealed a diffraction based lack of lateral resolution, that couldn’t be solved satisfactory by the application of STED microscopy. To generate a precise map of synaptic protein distribution, superresolution light microscopy (dSTORM) was established with a lateral resolution of 20 nm. Pronounced structural plasticity, high active zone density and complex structure of hippocampal mossy fibre boutons turned out to be a drawback of this preparation. Therefore mammalian neuromuscular endplates that are well characterised by electron microscopy and display a highly symmetrical shape were introduced as a preparation for dSTORM. At the endplate dSTORM revealed a differential distribution of active zone proteins Piccolo and Bassoon. Moreover, for the first time it was possible to resolve the aparture of postsynaptic folds by light microscopy. These results show that it was possible to establish tools based on superresolution light microscopy, that are capable of exploring active zone ultrastructure on a molecular level. It will be future tasks to use these novel techniques in a functional context. Based on experimental advances shown in this work like specialised recording chambers for slicecultures or the use of rollertube cultures, dSTORM will allow to address questions concerning synaptic function and plasticity, down to counting single molecules.
3

Emergence of individual behavioural traits and associated hippocampal plasticity in genetically identical mice

Freund, Julia 24 February 2016 (has links) (PDF)
Die Erforschung der Zusammenhänge zwischen Gehirnplastizität und individuellem Verhalten gestaltet sich aufgrund ihrer Komplexität im Tiermodell schwierig. Die vorliegende Studie wurde im mit dem Ziel konzipiert, die Individualitätsentwicklung bei Mäusen mit den gleichen physiologischen und genetischen Voraussetzungen in einer komplexen räumlichen und sozialen Umgebung zu beschreiben. Ich untersuchte die Korrelation dieser Entwicklung mit der Neurogenese im adulten Hippokampus als Maß für Gehirnplastizität. Zu diesem Zweck wurden zwei je mit einem automatisierten RFID-Tracking-System ausgestattete Großgehege mit jeweils 40 Tieren besiedelt. Die Bewegungen der Tiere wurden kontinuierlich aufgezeichnet und es wurden zudem direkte Verhaltensbeobachtungen durchgeführt. Die Tiere zeigten eine normale physiologische Entwicklung. Die Roaming Entropy (RE), ein Maß für die Gleichmäßigkeit, mit der die Tiere ihr Gehege nutzten, beschreibt das Erkundungsverhalten der einzelnen Mäuse. Die kumulativ erworbenen RE-Werte (cRE) in jedem der beiden Gehege wurden mit der Zeit zunehmend verschieden. Es war nicht möglich, aufgrund kleiner anfänglicher Unterschiede die Endwerte zu berechnen. Das bedeutet, dass die Tiere erst durch die andauernde Interaktion mit ihrer Umwelt und den Artgenossen unterschiedlicher wurden. Darüber hinaus sind die cRE-Werte am Endpunkt positiv mit den Neurogenesewerten korreliert. Dies beweist, dass während der Entwicklung auftretende Faktoren die Individualitätsentwicklung beeinflussen. Dieser Prozess benötigt plastische Hirnstrukturen und formt diese wiederum. Die Verhaltensanalysen zeigten, dass Tiere, die viele Antennenkontakte sammelten („most active“, MA) nicht zwangsläufig auch hohe cRE-Werte hatten. MA-Mäuse waren häufiger an sozialen Interaktionen beteiligt als Tiere mit wenigen Antennenkontakten („least active“, LA), akkumulierten über die Zeit niedrigere cRE-Werte und standen vermutlich weiter unten in der sozialen Hierarchie. Zusammenfassend kann man sagen, dass das Ausmaß der räumlichen Exploration und die allmähliche Erweiterung der Erfahrung mit einer gesteigerten Plastizität des Gehirns in Form von adulter Neurogenese verbunden war. Die Daten zeigen, dass Tiere mit den gleichen Voraussetzungen sich dennoch auf zunehmend divergierende, individuelle Art entwickeln. Dies ist zumindest teilweise durch leicht unterschiedliche epigenetische Voraussetzungen zu erklären, die durch das Wechselspiel mit dem komplexen Umfeld weiter auseinanderdriften. Auch scheint es, dass Individuation lebenden Organismen inhärent und Voraussetzung für evolutionäre Prozesse ist. Die Studie zeigt, dass die Unterschiede in individuellem Verhalten und Gehirnstruktur nicht allein durch Genen und Umweltbedingungen festgelegt sind, sondern auch durch Faktoren, die sich während der ontogenetischen Entwicklung entfalten, beeinflusst werden. Der beschriebene Versuchsaufbau stellt darüber hinaus ein Tiermodell für die Untersuchung von Mechanismen und modulierenden Faktoren auf die strukturellen Grundlagen der Plastizität als individuelle Reaktion auf die gemeinsam genutzte Umgebung dar. / The complex nature of the relationship between brain plasticity and individual behaviour renders its investigation using animal models difficult. The present study was designed to describe the emergence of individuality in mice with the same physiological, environmental and genetic preconditions in response to complex environmental and social cues. I investigated the correlation of this development to brain plasticity, namely neurogenesis in the adult hippocampus. To this end, two large, multi-level enclosures fitted with and automated RFID tracking system were populated with 40 animals to each. The mice were continuously tracked and live behaviour observations were done. The animals showed normal physiological development. The Roaming Entropy (RE), a measure for the evenness of their usage of the enclosure, describes the exploration behaviour of each animal. Cumulatively acquired RE scores (cRE) within an enclosure increasingly diverged with time. Small differences at the beginning were not predictive of the end values. Thus, the animals became different through the continued interaction with environment and conspecifics. Moreover, the cRE values at the end point positively correlated with the amount of hippocampal neurogenesis. This proves that factors emerging during development contribute to individuality development. These factors at the same time shape and rely on plastic brain structures. Behavioural analyses showed that animals with a high amount of antenna contacts (most active, MA mice) were not necessarily those with high cRE values. MA mice were more often involved in social interactions than the least active mice (least active, LA), accumulated lower cRE scores over time and seemed to be lower in the social hierarchy. In conclusion, the amount of spatial exploration and gradual broadening of experience was linked to brain plasticity in the form of elevated levels of hippocampal neurogenesis. The data shows that animals with same preconditions still develop along increasingly divergent, individual paths. This is probably partly given through slightly different epigenetic preconditions, drifting further apart by interaction with the complex environment. Also, individuation seems to be inherent in living organisms and necessary for evolutionary processes. The study shows firstly that differences in individual behaviour and brain structure are defined not only by genes and the environment but also modulated by factors unfolding or emerging during ontogenetic development. The present paradigm moreover introduces an animal model for studying mechanisms and influences on the structural basis of plasticity as an individual response to the nonshared environment.
4

Emergence of individual behavioural traits and associated hippocampal plasticity in genetically identical mice

Freund, Julia 13 April 2015 (has links)
Die Erforschung der Zusammenhänge zwischen Gehirnplastizität und individuellem Verhalten gestaltet sich aufgrund ihrer Komplexität im Tiermodell schwierig. Die vorliegende Studie wurde im mit dem Ziel konzipiert, die Individualitätsentwicklung bei Mäusen mit den gleichen physiologischen und genetischen Voraussetzungen in einer komplexen räumlichen und sozialen Umgebung zu beschreiben. Ich untersuchte die Korrelation dieser Entwicklung mit der Neurogenese im adulten Hippokampus als Maß für Gehirnplastizität. Zu diesem Zweck wurden zwei je mit einem automatisierten RFID-Tracking-System ausgestattete Großgehege mit jeweils 40 Tieren besiedelt. Die Bewegungen der Tiere wurden kontinuierlich aufgezeichnet und es wurden zudem direkte Verhaltensbeobachtungen durchgeführt. Die Tiere zeigten eine normale physiologische Entwicklung. Die Roaming Entropy (RE), ein Maß für die Gleichmäßigkeit, mit der die Tiere ihr Gehege nutzten, beschreibt das Erkundungsverhalten der einzelnen Mäuse. Die kumulativ erworbenen RE-Werte (cRE) in jedem der beiden Gehege wurden mit der Zeit zunehmend verschieden. Es war nicht möglich, aufgrund kleiner anfänglicher Unterschiede die Endwerte zu berechnen. Das bedeutet, dass die Tiere erst durch die andauernde Interaktion mit ihrer Umwelt und den Artgenossen unterschiedlicher wurden. Darüber hinaus sind die cRE-Werte am Endpunkt positiv mit den Neurogenesewerten korreliert. Dies beweist, dass während der Entwicklung auftretende Faktoren die Individualitätsentwicklung beeinflussen. Dieser Prozess benötigt plastische Hirnstrukturen und formt diese wiederum. Die Verhaltensanalysen zeigten, dass Tiere, die viele Antennenkontakte sammelten („most active“, MA) nicht zwangsläufig auch hohe cRE-Werte hatten. MA-Mäuse waren häufiger an sozialen Interaktionen beteiligt als Tiere mit wenigen Antennenkontakten („least active“, LA), akkumulierten über die Zeit niedrigere cRE-Werte und standen vermutlich weiter unten in der sozialen Hierarchie. Zusammenfassend kann man sagen, dass das Ausmaß der räumlichen Exploration und die allmähliche Erweiterung der Erfahrung mit einer gesteigerten Plastizität des Gehirns in Form von adulter Neurogenese verbunden war. Die Daten zeigen, dass Tiere mit den gleichen Voraussetzungen sich dennoch auf zunehmend divergierende, individuelle Art entwickeln. Dies ist zumindest teilweise durch leicht unterschiedliche epigenetische Voraussetzungen zu erklären, die durch das Wechselspiel mit dem komplexen Umfeld weiter auseinanderdriften. Auch scheint es, dass Individuation lebenden Organismen inhärent und Voraussetzung für evolutionäre Prozesse ist. Die Studie zeigt, dass die Unterschiede in individuellem Verhalten und Gehirnstruktur nicht allein durch Genen und Umweltbedingungen festgelegt sind, sondern auch durch Faktoren, die sich während der ontogenetischen Entwicklung entfalten, beeinflusst werden. Der beschriebene Versuchsaufbau stellt darüber hinaus ein Tiermodell für die Untersuchung von Mechanismen und modulierenden Faktoren auf die strukturellen Grundlagen der Plastizität als individuelle Reaktion auf die gemeinsam genutzte Umgebung dar. / The complex nature of the relationship between brain plasticity and individual behaviour renders its investigation using animal models difficult. The present study was designed to describe the emergence of individuality in mice with the same physiological, environmental and genetic preconditions in response to complex environmental and social cues. I investigated the correlation of this development to brain plasticity, namely neurogenesis in the adult hippocampus. To this end, two large, multi-level enclosures fitted with and automated RFID tracking system were populated with 40 animals to each. The mice were continuously tracked and live behaviour observations were done. The animals showed normal physiological development. The Roaming Entropy (RE), a measure for the evenness of their usage of the enclosure, describes the exploration behaviour of each animal. Cumulatively acquired RE scores (cRE) within an enclosure increasingly diverged with time. Small differences at the beginning were not predictive of the end values. Thus, the animals became different through the continued interaction with environment and conspecifics. Moreover, the cRE values at the end point positively correlated with the amount of hippocampal neurogenesis. This proves that factors emerging during development contribute to individuality development. These factors at the same time shape and rely on plastic brain structures. Behavioural analyses showed that animals with a high amount of antenna contacts (most active, MA mice) were not necessarily those with high cRE values. MA mice were more often involved in social interactions than the least active mice (least active, LA), accumulated lower cRE scores over time and seemed to be lower in the social hierarchy. In conclusion, the amount of spatial exploration and gradual broadening of experience was linked to brain plasticity in the form of elevated levels of hippocampal neurogenesis. The data shows that animals with same preconditions still develop along increasingly divergent, individual paths. This is probably partly given through slightly different epigenetic preconditions, drifting further apart by interaction with the complex environment. Also, individuation seems to be inherent in living organisms and necessary for evolutionary processes. The study shows firstly that differences in individual behaviour and brain structure are defined not only by genes and the environment but also modulated by factors unfolding or emerging during ontogenetic development. The present paradigm moreover introduces an animal model for studying mechanisms and influences on the structural basis of plasticity as an individual response to the nonshared environment.
5

Immunhistochemische Untersuchung von Oligodendrozyten im post- mortem Hippokampus bei Schizophrenie / Immunohistochemical Analysis of Oligodendrocytes in post - mortem Hippocampus in Schizophrenia

Shariati, Jawid 01 June 2017 (has links)
No description available.
6

Interaktion zwischen entorhinalem Kortex und Hippokampus bei der Temporallappenepilepsie

Behr, Joachim 28 January 2003 (has links)
1. Interaktion zwischen entorhinalem Kortex und Hippokampus Lernen und Gedächtnis sind auf das engste mit dem Hippokampus und dem entorhinalen Kortex (EC) verbunden. Allerdings sind diese Hirnstrukturen auch an einer der häufigsten und medikamentös oftmals nur schwer therapierbaren fokalen Epilepsien beteiligt: der mesialen Temporallappenepilepsie (TLE). Der EC scheint eine wesentliche Bedeutung in der Generierung extrahippokampaler Temporallappenanfälle zu besitzen. Unsere bisherigen Untersuchungen zur Interaktion zwischen dem EC und dem Hippokampus haben gezeigt, daß unter physiologischen Bedingungen die Area dentata eine Filterfunktion übernimmt und die Übertragung epileptiformer Aktivität vom EC zum Hippokampus unterbindet. Im chronisch epileptischen Tier (Kindling-Modell) kommt es allerdings zu einer Aufhebung dieser Filterfunktion und somit zu einer ungehinderten Ausbreitung epileptiformer Aktivität in den Hippokampus. Da der glutamaterge NMDA-Rezeptor eine zentrale Rolle in der Induktion nutzungsabhängiger Plastizität spielt, ist er von wesentlicher Bedeutung in der Epileptogenese. Untersuchungen an Körnerzellen der Area dentata zeigten wenige Stunden nach dem letzten epileptischen Anfall eine Zunahme der über NMDA-Rezeptoren vermittelten Ströme. Diese führte zu einer Faszilitierung hochfrequenter reizevozierter Potentiale. Dieser Befund zeigt, daß im epileptischen Gewebe hochfrequente Entladungen die Area dentata überwinden können und in den Hippokampus weitergeleitet werden. Vier Wochen nach dem letzten Anfallsereignis waren die beschriebenen Veränderungen allerdings nicht mehr nachweisbar. Diese kurzzeitig veränderte synaptische Transmission der NMDA-Rezeptorkanäle scheint demzufolge eher für die Epileptogenese als für die Ictogenese verantwortlich zu sein. Die Bedeutung der Kainat-Rezeptoren im chronisch epileptischen Gewebe ist aufgrund der bis vor wenigen Jahren fehlenden selektiven Agonisten und Antagonisten kaum untersucht worden. Wir haben gezeigt, daß in der Area dentata des chronisch epileptischen Tieres (Kindling-Modell) die Aktivierung von präsynaptischen Kainat-Rezeptoren inhibitorischer Interneurone sowohl die spontane als auch die reizevozierte GABA-Freisetzung reduziert. Über diesen Mechanismus scheint der während eines epileptischen Anfalls vermehrt freigesetzte exzitatorische Neurotransmitter Glutamat die GABAerge Inhibition zu vermindern und somit die Erregbarkeit der Area dentata zu steigern. 2. Die Rolle des Subikulums in der Temporallappenepilepsie Eine wesentliche Aufgabe des Subikulums ist es, hippokampale Informationen zu verarbeiten und in verschiedene kortikale und subkortikale Hirnregionen weiterzuleiten. Zudem scheint es von besonderer Bedeutung für die Generierung und Ausbreitung hippokampaler Anfälle zu sein. Gestützt wird diese Annahme durch folgende Befunde: Zunächst besitzt das Subikulum Netzwerkeigenschaften, die es ihm im in vitro Epilepsiemodell ermöglichen, spontane epileptiforme Aktivität zu generieren. Darüber hinaus verfügt es über einen hohen Anteil sogenannter burst-spiking Zellen. Deren intrinsische Eigenschaften tragen erheblich zu dem epileptogenen Verhalten des Subikulums bei. Weiterhin erhalten subikuläre Pyramidenzellen exzitatorische Eingänge sowohl aus der Area CA1 als auch aus dem EC, welche bereits bei Ruhemembranpotential aktivierbare NMDA-Rezeptorströme zeigen. Schließlich zeigen burst-spiking Zellen im Vergleich zu regular-spiking Zellen eine ausgeprägte über NMDA-Rezeptoren vermittelte synaptische Plastizität (Langzeit-Potenzierung; LTP). Untersuchungen am chronisch epileptischen Tier (Kindling-Modell) ergaben einen unverändert hohen Anteil an burst-spiking Zellen im Subikulum. Wenige Stunden nach dem letzten epileptischen Anfall fällt bei diesen Neuronen eine fehlende, durch Aktionspotentiale induzierte Nachhyperpolarisation auf. Diese supprimierte intrinsische Hemmung ist jedoch 28 Tage nach dem letzten epileptischen Anfall nicht mehr nachzuweisen und spielt demzufolge insbesondere in der Genese, weniger im chronischen Verlauf der Erkrankung eine Rolle. Neben den exzitatorischen und inhibitorischen Neurotransmittern Glutamat und GABA bestimmen auch körpereigene Amine wie Serotonin und Dopamin über subkortikale Afferenzen das funktionelle Gleichgewicht aus Erregung und Hemmung wesentlich mit. Da die TLE nicht selten mit neurologischen und psychiatrischen Erkrankungen einhergeht, die mit in das Dopamin- und Serotoninsystem eingreifenden Pharmaka therapiert werden, haben wir uns in einigen Arbeiten mit deren modulatorischen Wirkungen auf die Membraneigenschaften und die synaptische Transmission befaßt. Die Wirkungen von Dopamin auf die Neurotransmission sind vielfältig, abhängig von den beteiligten Rezeptoren in der entsprechenden Hirnregion. Das Subikulum, das eine ausgeprägte mesenzephale, dopaminerge Projektion vom ventralen Tegmentum erhält, expremiert sowohl D1- als auch D2-Rezeptoren. Wir konnten zeigen, daß Dopamin primär die glutamaterge synaptische Transmission über einen präsynaptisch lokalisierten D1-Dopaminrezeptor unterdrückt und sekundär über die verminderte Erregung inhibitorischer Interneurone die polysynaptische GABAerge Hemmung reduziert. / 1. Interaction between the entorhinal cortex and the hippocampus The hippocampus and the entorhinal cortex are crucially involved in the acquisition, consolidation and retrieval of long-term memory traces. However, both structures play a critical role in pharmacologically intractable temporal lobe epilepsy. The entorhinal cortex provides the main input to the hippocampus. We have shown that kindling facilitates the propagation of epileptiform activity through the dentate gyrus. Our data are consistent with the normal function of the dentate gyrus as a filter limiting the spread of epileptiform activity within the entorhinal-hippocampal complex. This gating mechanism breaks down after chronic epilepsy induced by kindling. In the mammalian brain, the NMDA subclass of glutamate receptors plays a central role in the induction of several forms of use-dependent plasticity. However, synaptic plasticity can potentially underlie pathological situations, notably in animal and human forms of epilepsy. The enhanced excitability of the kindled dentate gyrus several hours after the last seizure, as well as the breakdown of its gating function, appear to result from transiently enhanced NMDA receptor activation that provides significantly slower EPSC kinetics than those observed in control slices and in slices from kindled animals with a four weeks seizure-free interval. Therefore, NMDA receptors seem to play a critical role in the acute throughput of seizure activity and in the induction of the kindled state but not in the persistence of enhanced seizure susceptibility. The functional involvement of kainate receptors in epileptogenesis gets more and more elucidated. We found that in chronic epileptic rats (kindling-model), activation of presynaptic kainate receptors of inhibitory interneurons depresses spontaneous and stimulus-induced GABA release. The kindling-induced sensitivity of GABA release to kainate receptor activation may produce a use-dependent hyperexcitability in the epileptic dentate gyrus facilitating the spread of limbic seizures through the entorhinal-hippocampal complex in temporal lobe epilepsy. 2. The role of the subiculum in temporal lobe epilepsy The subiculum controls most of the entorhinal-hippocampal output. It receives strong excitatory input from area CA1 and the entorhinal cortex and relays information to a variety of distant cortical and subcortical structures. The subiculum seems to be crucially involved in the generation and propagation of hippocampal seizures. The seizure susceptibility of the subiculum relies (a) on a high fraction of burst-firing principle cells that a capable to undergo synaptic plasticity and (b) on an epilepsy-prone network to generate spontaneous seizures. In both, control and kindled preparations the subiculum contains an extensive sub-population of bursting cells expressing amplifying membrane characteristics. Subicular cells showed a transient depression of the fast and slow afterhyperpolarization in the course of kindling that may contribute to the induction but not permanence of the kindled state. Apart from the excitatory and inhibitory neurotransmission physiological amines like 5-HT and dopamine (DA) may offset the frail balance between excitation and inhibition in the hippocampus. As temporal lobe epilepsy is often associated with diseases that are treated with drugs affecting the 5-HT and DA system, we investigated the effect of these transmitters on intrinsic and synaptic properties of subicular principle cells. The subiculum receives a dense mesencepahalic dopaminergic projection from the ventral tegmental area and expresses high levels of D1- and D2-like DA receptors. Our results indicate that DA strongly suppresses glutamatergic hippocampal and entorhinal neurotransmission onto subicuar neurons by activation of presynaptic D1-like DA receptors. In addition, DA decreases polysynaptic inhibition by attenuating the glutamatergic drive onto subicular interneurons.
7

Narušená Funkce Hipokampu u Modelu Obsedantně-Kompulsivní Poruchy Vyvolané Quinpirolem / Hippocampus Dysfunction in Quinpirole Sensitization Model of Obsessive-Compulsive Disorder

Brožka, Hana January 2020 (has links)
Obsessive-compulsive disorder (OCD) is a serious psychiatric condition manifested by repeated thoughts followed by stereotypic compulsive behavior. Alterations to cortico-thalamo-striato- cortical circuits are most often implicated in the pathophysiology of OCD. However, many studies have also found a changed volume, shape and activity of the hippocampus in OCD patients. This work focused on the activity of hippocampal CA1 cells during stereotypical checking behavior and on cognitive flexibility in a quinpirole (QNP) sensitization model of OCD. The activity of CA1 hippocampal cells during stereotypical checking was assessed in an enriched open-field test in QNP sensitized rats. Arc+ (activity-regulated cytoskeletal associated protein, or Arg 3.1) mRNA expression profiles were determined in CA1 coronal hippocampal sections following stereotypical checking. After the establishment of stereotypical checking (10 sessions), rats were exposed to the arena and sacrificed after 5 minutes. QNP sensitized animals visited the same objects with the same frequency as during previous sessions, while control rats did not. Locomotor activity was comparable between QNP treated rats and controls. Following sacrifice, rat brains were flash frozen and sliced to 20 µm thick sections. Sections, mounted on slides, were hybridized...
8

Principles of local computation in the entorhinal cortex

Reifenstein, Eric 21 October 2016 (has links)
Lebewesen sind jeden Tag Sequenzen von Ereignissen ausgesetzt, die sie sich merken wollen. Es ist jedoch ein allgemeines Problem, dass sich die Zeitskalen des Verhaltens und der Induzierung von neuronalem Lernen um mehrere Größenordnungen unterscheiden. Eine mögliche Lösung könnte "Phasenpräzession" sein - das graduelle Verschieben von Aktionspotential-Phasen relativ zur Theta-Oszillation im lokalen Feldpotential. Phasenpräzession ermöglicht es, Verhaltens-Sequenzen zeitlich zu komprimieren, herunter bis auf die Zeitskala von synaptischer Plastizität. In dieser Arbeit untersuche ich das Phasenpräzessions-Phänomen im medialen entorhinalen Kortex der Ratte. Ich entdecke, dass entorhinale Gitterzellen auf der für das Verhalten relevanten Einzellaufebene Phasenpräzession zeigen und dass die Phasenpräzession in Einzelläufen stärker ist als in zusammengefassten Daten vieler Läufe. Die Analyse von Einzelläufen zeigt zudem, dass Phasenpräzession (i) in Zellen aus allen Schichten des entorhinalen Kortex existiert und (ii) von den komplexen Bewegungsmustern der Ratten in zweidimensionalen Umgebungen abhängt. Zum Abschluss zeige ich, dass Phasenpräzession zelltyp-spezifisch ist: Sternzellen in Schicht II des medialen entorhinalen Kortex weisen klare Phasenpräzession auf, wohingegen Pyramidenzellen in der selben Schicht dies nicht tun. Diese Ergebnisse haben weitreichende Implikationen sowohl für das Lokalisieren des Ursprungs als auch für die m"oglichen Mechanismen von Phasenpräzession. / Every day, animals are exposed to sequences of events that are worth recalling. It is a common problem, however, that the time scale of behavior and the time scale for the induction of neuronal learning differ by multiple orders of magnitude. One possible solution could be a phenomenon called "phase precession" - the gradual shift of spike phases with respect to the theta oscillation in the local field potential. Phase precession allows for the temporal compression of behavioral sequences of events to the time scale of synaptic plasticity. In this thesis, I investigate the phase-precession phenomenon in the medial entorhinal cortex of the rat. I find that entorhinal grid cells show phase precession at the behaviorally relevant single-trial level and that phase precession is stronger in single trials than in pooled-trial data. Single-trial analysis further revealed that phase precession (i) exists in cells across all layers of medial entorhinal cortex and (ii) is altered by the complex movement patterns of rats in two-dimensional environments. Finally, I show that phase precession is cell-type specific: stellate cells in layer II of the medial entorhinal cortex exhibit clear phase precession whereas pyramidal cells in the same layer do not. These results have broad implications for pinpointing the origin and possible mechanisms of phase precession.
9

Analysis of hippocampal inhibitory and excitatory neurons during sharp wave-associated ripple

Pangalos, Maria 31 August 2016 (has links)
Im Hippokampus gibt es verschiedene Netzwerkoszillationen mit unterschiedlichen Frequenzen. Ein Typ dieser Oszillationen sind die ”Ripple” mit einer Frequenz von etwa 200 Hz, welche in Komplexen mit einer Aktivitätswelle, der ”Sharp wave” auftreten. Sharp wave-ripple Komplexe (SWR) werden mit der Konsolidierung von Gedächtnis in Zusammenhang gebracht. Das Netzwerk, das den SWR unterliegt, hat bestimmte Mechanismen, von denen einige in der vorliegenden Arbeit näher untersucht werden. Im ersten Teil wird untersucht, wie ein hemmendes Interneuron in der hippokampalen Region CA1, das ”oriens-lacunosum moleculare” (O-LM) Interneuron, während der SWR in das Netzwerk eingebunden ist. Wir konnten zeigen, dass O-LM Zellen während der SWR starke synaptische Exzitation erhalten. Die Exzitation tritt spät während des Ripples im lokalen Feldpotential (LFP) auf und zeigt eine Phasenankopplung an die Ripple. In etwa der Hälfte der O-LM Zellen konnten wir Aktionspotentiale während der SWR zeigen, die an die Ripple-Phase im LFP gebunden sind und nach dem Ripple-Maximum auftreten. Der zweite Teil der Arbeit bezieht sich auf die hippokampale Region CA1 und vergleicht während SWR den synaptischen Eingang in zwei Untertypen von Pyramidenzellen, die tiefen und die oberflächlichen Pyramidenzellen. Beide Untertypen bekommen synaptische Eingänge während der SWR. Diese Eingänge sind eine Mischung aus exzitatorischen und inhibitorischen Eingängen, die in den Untertypen in ihrer Stärke vergleichbar sind. Im dritten Teil untersuchen wir die SWR in der Region CA2 des Hippokampus und zeigen, dass Pyramidenzellen in CA2 in das Netzwerk während SWR eingebunden sind. Wir können sowohl exzitatorische als auch inhibitorische synaptische Eingänge in den Pyramidenzellen darstellen und konnten eine Phasenkopplung der synaptischen Eingänge an die SWR im LFP zeigen. Aufgrund der Phasenverschiebung bei verschiedenen Haltepotentialen vermuten wir einen Oszillator für die Exzitation und einen für die Hemmung. / In the hippocampus there are different patterns of activity also known as network oscillations. These oscillations express different frequencies, and one oscillation is the ripple oscillation at around 200 Hz. It is associated with an activity wave called sharp wave and form a so-called sharp wave-ripple complex (SWR). SWRs are implicated in memory consolidation. In this thesis we investigate mechanisms underlying sharp wave-ripple complexes. In the first part of this thesis I examine one type of inhibitory neurons in the region CA1 of the hippocampus during SWR. Oriens-lacunosum moleculare (O-LM) interneurons receive strong excitatory synaptic input during ripples. This input arrives after the ripple maximum and is phase locked with the ripple cycles. Around half of the probed O-LM cells fire during the SWR and thereby show an active participation during SWR. The magnitude of excitation in O-LM cells and the ratio between excitation and inhibition determine if an O-LM cell is active during the SWR. Action potentials in these cells occur late during the SWR and are phase locked. In the second part the synaptic input onto excitatory pyramidal cells were investigated during ripple oscillations. Previous work has identified two different types of pyramidal cells in area CA1. We recorded from deep and superficial pyramidal cells. For both types of pyramidal cells the inhibitory and excitatory synaptic inputs temporally associated with ripples express comparable strength. In the last and third part, I recorded SWR in the CA2 region of the hippocampus and showed incidence, frequency and amplitude of ripples and SWR. Pyramidal cells in the CA2 region are integrated into the network during SWR. They receive SWR associated synaptic input during SWR. The excitatory and inhibitory synaptic inputs in CA2 pyramidal cells were investigated in detail. Phase analysis show phase locking of local field potential ripples and synaptic inputs to the ascending phase of the ripple cycle.
10

The hippocampal mossy fiber synapse

Gundlfinger, Anja 19 June 2008 (has links)
Synapsen sind die spezialisierten subzellulären Kontaktstellen im Gehirn, die die Kommunikation zwischen einzelnen Nervenzellen, den Neuronen, auf elektrischem oder chemischem Weg ermöglichen. Anatomisch und physiologisch sind Synapsen jedoch erstaunlich divers, unter anderem abhängig von der untersuchten Hirnregion, der Identität der prä- und postsynaptischen Neurone, den präsynaptisch ausgeschütteten Neurotransmittern und postsynaptischen Rezeptorsystemen. Generell kann die Effektivität oder Stärke synaptischer Übertragung durch unterschiedliche Mechanismen beeinflusst werden. Hier werden nun Mechanismen, Ausprägung und funktionelle Relevanz von Neuromodulation, Kurzzeit- und Langzeit-Plastizität der Stärke der synaptischen Übertragung an der hippokampalen Moosfaser-Synapse erarbeitet. Die vorgestellten Daten konnten mit Hilfe von in vitro experimentellen Ansätzen an der hippokampalen Formation von Mäusen gewonnen werden und durch Analysen und Simulationen aus dem Bereich der theoretischen Biologie bestätigt und erweitert werden. / Chemical synapses are key elements for the communication between nerve cells. This communication can be regulated on various time scales and through different mechanisms affecting synaptic transmission. Amongst these are slow and long-lasting adjustments by endogenous neuromodulators, instantaneous and reversible activity-dependent regulation by short-term plasticity and persistent activity-dependent changes by long-term plasticity. Within this thesis, we have investigated several aspects of modulation of synaptic transmission and its functional relevance at the example of the hippocampal mossy fiber synapse. The presented results were acquired through electrophysiological and microfluorometric experiments at the hippocampal formation of mice and could be verified and substantiated through theoretical analyses, simulations and computational modelling.

Page generated in 0.415 seconds