Le phosphate inorganique (Pi) est un minéral essentiel de notre organisme, qui intervient dans la composition des acides nucléiques et des phospholipides, dans la minéralisation des os et des dents, dans la production d’énergie, et dans la régulation des voies de signalisation. L’homéostasie du Pi est étroitement régulée par différents transporteurs, et des anomalies du transport de Pi peuvent avoir des conséquences cliniques sévères. Chez l’homme, ils existent 3 transporteurs de Pi distincts de type SLC (solute carrier) avec une distribution tissulaire large et initialement identifiés en tant que récepteurs de rétrovirus : PiT1/SLC20A1, PiT2/SLC20A2, et XPR1/SLC53A1.Des mutations dans PiT2 sont associées à une maladie rare, la calcification cérébrale primaire familiale (PFBC), caractérisée par des dépôts de phosphate de calcium dans les noyaux gris centraux et par l’expression de troubles neuropsychiatriques. Alors que PiT1 ne semble pas être impliqué dans cette maladie, nous avons découvert que des mutations dans XPR1 étaient présentes chez des patients PFBC, renforçant le lien entre la maladie PFBC et les désordres de l’homéostasie du phosphate.Dans ce travail, nous avons cherché à comprendre comment PiT2 et XPR1, deux transporteurs de Pi mais de flux opposés peuvent conduire à une même maladie. Pour cela, nous avons étudié le lien entre PiT2 et XPR1 dans la régulation du Pi ainsi que les domaines de XPR1 impliqués dans le transport. Nous avons d’abord identifié de nouveaux variants PFBC dans PiT2 et XPR1 et confirmé l'effet délétère de ces mutations sur l’import et l’export. Nous avons pu distinguer des mutations qui abolissaient l’expression en surface de XPR1, et donc indirectement l’export de Pi, alors que d’autres avaient un impact fonctionnel direct sur les transporteurs pourtant présents à la membrane plasmique.L’inactivation de XPR1 dans des cellules haploïdes humaines induit une altération profonde de l’export de Pi sans effet notable sur l’import. De manière surprenante, l’inactivation de PiT2 entraine un effet modéré sur l’import, probablement dû à l'activité complémentaire de PiT1, avec une chute de l’export dépendant de XPR1. Cet effet identifie une boucle de régulation que nous avons montrée être essentielle au maintien des niveaux de phosphate et d’ATP. Ces résultats révèlent que le défaut d’export de phosphate par inactivation de PiT2 et XPR1 est susceptible d’être l’étape-clé qui conduit à une maladie commune, la PFBC.Nous nous sommes concentrés sur cette étape d‘export régulée en étudiant le domaine SPX de XPR1 dans lequel la plupart des mutations PFBC ont été retrouvées. Nous avons identifié la tankyrase (TNK) comme interactant cellulaire, et localisé son site d’interaction à la bordure carboxyle de SPX. Nous avons observé que la délétion de SPX entrainait un défaut d’export de Pi, et que la perte d’interaction de TNK à XPR1 par mutagenèse ponctuelle avait le même effet, suggérant que TNK et SPX sont 2 composants essentiels à l’export de phosphate. Enfin, nous avons identifié de nouvelles mutations de XPR1 à l'extrémité C-terminale qui abolissaient l’export de Pi, et montré que la délétion de ce domaine entrainait un défaut d’expression de XPR1 à la membrane plasmique. Nos résultats indiquent donc que les domaines N- et C-terminaux jouent un rôle clé dans l’export, et donc dans l’homéostasie du phosphate, avec le domaine C-terminal jouant plutôt un rôle dans le trafic en surface de XPR1.L’ensemble de ce travail a permis de documenter de nouvelles mutations PFBC dans les gènes PiT2 et XPR1, de démontrer que ces transporteurs étaient impliqués dans l’homéostasie intracellulaire du phosphate, en dévoilant que l’export de phosphate est vraisemblablement l’étape clé de la PFBC, ouvrant ainsi de nouvelles pistes dans la compréhension de cette maladie. Nous avons également identifié des domaines de XPR1 et un partenaire cellulaire, essentiels à l’export de Pi et/ou au trafic membranaire. / Phosphate (Pi) is a key mineral that participates directly in the synthesis of nucleic acids and membranes, bone and tooth mineralization, energy production, and signal transduction. Pi homeostasis is tightly regulated by transporter-mediated fluxes that adjust Pi concentration in real time, and defect in Pi transport has been associated with several pathologies. In humans, three Pi transporters, which belong to the solute carrier (SLC) superfamily, are widely expressed: PiT1/SLC20A1, PiT2/SLC20A2, and XPR1/SLC53A1. Interestingly, all three were initially identified as receptors for mammalian gammaretroviruses.Mutations in PiT2/SLC20A2 are responsible for a rare neurodegenerative disorder, the primary familial brain calcification (PFBC), characterized by deposits of calcium Pi in the basal ganglia and other regions of the brain, and associated with diverse neuropsychiatric clinical manifestations. While PiT1/SLC20A1 has not been involved in PFBC, we recently identified mutations in XPR1/SLC53A1 as causative for PFBC, thus linking further the disease with cellular Pi homeostasis dysfunction.In this work, we aimed to understand how defects of opposite Pi transport functions lead to PFBC, investigated the relationship between PiT2 and XPR1 in cellular Pi regulation, and studied XPR1 domains in Pi transport. We first identified several PFBC mutations in PiT2/SLC20A2 and XPR1/SLC53A1, and confirmed their impact on Pi import or export, respectively. Some of the mutations altered transporter cell surface expression, resulting in Pi transport impairment, while others did neither alter cell surface expression, nor retroviral receptor functions, confirming that Pi transport function and viral envelope glycoprotein binding can be structurally distinguished.Using single gene knock-out human haploid cells, we showed that depletion of XPR1/SLC53A1 resulted in a dramatic Pi export alteration, with no detectable effect on Pi import, in agreement with Pi exporter function of XPR1. Interestingly, depletion of PiT2/SLC20A2 had little impact on Pi uptake, most likely due to compensatory function of PiT1/SLC20A1, with, however, a surprising impact on Pi export mediated by XPR1. This effect is reminiscent to a regulation loop that we found to maintain both Pi and ATP constant. This results unveil for the first time that Pi export alteration, and not Pi import, is likely to be the common pathophysiological impact of mutations in both PiT2 and XPR1. This would explain the synonymous pathological effects of two transporters that have opposite transport activity.We further explored this regulated phosphate export by characterizing the SPX N-terminal cytoplasmic domain of XPR1, which harbors most of the PFBC mutations. We identified a cellular tankyrase (TNK) as a binding partner and mapped the TNK-binding site to the carboxyl border of SPX; furthermore, we found that mutations that abolished TNK binding resulted in loss of Pi export. Full deletion of SPX domain maintained cell surface expression but altered export, suggesting that both TNK and SPX are essential components for Pi export. Finally, during this work, we identified mutations in the XPR1 C-terminal domain as responsible for PFBC that also impaired Pi export, and showed that deletion of this domain prevented XPR1 cell surface expression. Our results therefore indicate that N- and C-terminal domains of XPR1 play a key role in phosphate homeostasis, the latter domain appearing to exert a more prominent role in XPR1 membrane trafficking and/or folding.
Identifer | oai:union.ndltd.org:theses.fr/2018MONTT042 |
Date | 18 September 2018 |
Creators | Lopez Sanchez, Uriel |
Contributors | Montpellier, Battini, Jean-Luc, Sitbon, Marc |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds