Return to search

AMPK, signalisation hypoxique et métabolisme tumoral / AMPK, hypoxic signaling and tumor metabolism

Les tumeurs solides sont souvent confrontées à un environnement déficient en oxygène, dit hypoxique. Hypoxia-Inducible Factor 1 (HIF1) est le facteur de transcription clé de l’adaptation cellulaire à l’hypoxie, régulant de nombreux gènes impliqués dans l’angiogenèse, le métabolisme cellulaire ou la régulation du pH. Ma thèse s’articule en trois axes autour de HIF1 et de la reprogrammation métabolique hypoxique. J’ai d’abord étudié Factor-Inhibiting HIF1 (FIH), l’un des deux senseurs d’oxygène régulant HIF1. Nous avons montré que FIH est essentiel dans le développement tumoral en inhibant à la fois l’activité transcriptionnelle de HIF1 et la voie p53-p21. J’ai ensuite étudié le « shift » du métabolisme cellulaire vers la glycolyse induit par HIF1, générant une addiction pour le glucose. Nos travaux ont montré que paradoxalement, les cellules hypoxiques synthétisent du glycogène via HIF1 constituant ainsi une réserve de glucose intracellulaire. Le glycogène confère alors une résistance accrue des cellules tumorales suite à une carence en glucose. Enfin, j’ai pu montrer que l’AMPK, « gardien de la balance énergétique », n’est pas nécessaire au maintien d’un niveau viable d’ATP suite à l’inhibition de la glycolyse, via le blocage de l’export de lactate, mais exerce, un effet protecteur en absence de glucose. Cependant, l’inhibition conjointe du transporteur de lactate, MCT4, et de l’AMPK réduit fortement le développement tumoral dans un modèle de xénogreffes chez la souris, suggérant un rôle crucial de ces deux acteurs dans ce contexte. L’ensemble de ces travaux a permis d’identifier plusieurs cibles potentielles impliquées dans la plasticité métabolique en hypoxie. / Cells of solid tumors are often exposed to an environment deficient in oxygen, i.e. hypoxic. The Hypoxia-Inducible Factor-1 (HIF-1) is the major transcription factor involved in cellular adaptation to hypoxia. HIF-1 regulates a wide array of genes involved in angiogenesis, cellular metabolism or pH regulation. My thesis is organized into three axes around HIF-1 and metabolic reprogramming in hypoxia. I first studied Factor-Inhibiting HIF-1 (FIH), one of two oxygen sensors regulating HIF-1. We showed that FIH is essential for tumor development through inhibition of the HIF-1 transcriptional activity as well as through the suppression of the p53-p21 axis. I then studied the HIF-1-induced « shift » in cellular metabolism toward glycolysis, which generates a type of “glucose addiction”. We showed that paradoxically, tumor cells store glycogen in hypoxia through a HIF-1 dependant mechanism. Glycogen served as a reservoir of intracellular glucose, which allows hypoxic cells to survive periods of glucose starvation. Finally, I studied AMPK «the guardian of energy », and showed that surprisingly, this kinase is not necessary in maintaining a viable level of ATP when glycolysis is inhibited (by blockade of lactate export). However, as expected, AMPK protected cells during glucose starvation. Moreover, combined inhibition of the lactate transporter MCT4 and of AMPK reduced dramatically tumor development in a xenograft model, suggesting a crucial role for these two actors in the context of growth of tumor cells in a hostile environment. Taken together these results identified several potential drug targets involved in the metabolic plasticity of hypoxic cells.

Identiferoai:union.ndltd.org:theses.fr/2014NICE4046
Date01 July 2014
CreatorsPelletier, Joffrey
ContributorsNice, Pouysségur, Jacques, Mazure, Nathalie
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds