This book deals with the kinetic modelling of gas mixtures. It extends the existing literature in mathematics for one species of gas to the case of gasmixtures. This is more realistic in applications. Thepresentedmodel for gas mixtures is proven to be consistentmeaning it satisfies theconservation laws, it admitsanentropy and an equilibriumstate. Furthermore, we can guarantee the existence, uniqueness and positivity of solutions. Moreover, the model is used for different applications, for example inplasma physics, for fluids with a small deviation from equilibrium and in the case of polyatomic gases. / Die vorliegende Arbeit beschäftigt sich mit der Modellierung von Gasgemischen mittels einer kinetischen Beschreibung. Es werden Grundlagen über die Boltzmanngleichung für Gasgemische und die BGK-Aproximation präsentiert. Insbesondere wird auf deren Erweiterung auf Gasgemische eingegangen. Es wird ein Gasgemisch bestehend aus zwei Sorten von Gasen ohne chemische Reaktionen betrachtet. Das Gemisch wird mittels eines Systems kinetischer BGK-Gleichungen modelliert, welches je zwei Wechselwirkungsterme enthält, die den Impuls- und Energieaustausch berücksichtigen. Das hier vorgestellte Modell enthält einige von Physikern und Ingenieuren vorgeschlagene Modelle als Spezialfälle. Es wird gezeigt, dass das hier vorgeschlagene Modell die wesentlichen physikalischen Eigenschaften, wie Erhaltungseigenschaften, Positivität aller Temperaturen, das H-Theorem und Maxwellverteilungen im Gleichgewicht, erfüllt. Des Weiteren können die üblichen makroskopischen Gleichungen daraus hergeleitet werden.
In der Literatur gibt es ein weiteres vorgeschlagenes Modell für Gasgemische mit nur einem Wechselwirkungsterm von Andries, Aoki und Perthame. In dieser Arbeit werden die Vorteile dieses Modells aus der Literatur und des hier vorgeschlagenen Modells diskutiert. Es wird die Nützlichkeit des hier vorgeschlagenen Modells illustriert, indem es dazu benutzt wird eine unbekannte Funktion in dem makroskopischen Modell für Gasgemische von Dellacherie herzuleiten. Des Weiteren wird für jedes dieser beiden Modelle Existenz, Eindeutigkeit und Positivität der Lösungen gezeigt.
Dann wird das hier vorgeschlagene Modell auf bestimmte physikalische Situationen angewandt: auf Elektronen und Ionen in einem Plasma, auf ein Gasgemisch, welches sich nicht im Gleichgewicht befindet und ein Gasgemisch bestehend aus Molekülen mit zusätzlichen inneren Freiheitsgraden.
Als erste Anwendung wird das Modell für geladene Teilchen erweitert und auf ein Gemisch aus Elektronen und Ionen angewandt, welches sich teilweise im Gleichgewicht befindet, teilweise nicht. Man findet solch eine Konstellation zum Beispiel bei der Fusion in einem Tokamak. Das Modell, welches hier vorgestellt wird, wird hier benutzt, da es die Wechselwirkungen zwischen Teilchen von der gleichen Sorte und Wechselwirkungen zwischen Teilchen verschiedener Sorten separiert. Dann wird ein neues Modell mithilfe der Mikro-Makro-Zerlegung hergeleitet, welches numerisch in einem Regime angewandt wird, in dem Gase teilweise im Gleichgewicht sind, teilweise nicht. Es werden theoretische Ergebnisse vorgestellt, zum einen Konvergenzraten gegen das Gleichgewicht im räumlich homogenen Fall, zum anderen die Landau-Dämpfung für Gasgemische, um sie mit Ergebnissen aus numerischen Simulationen vergleichen zu können.
Als zweite Anwendung wird ein Gasgemisch betrachtet, welches eine Abweichung vom Gleichgewichtszustand hat und makroskopisch mithilfe der Navier-Stokes-Gleichungen beschrieben wird. In dieser makroskopischen Beschreibung erwartet man vier physikalische Größen, die das physikalische Verhalten eines Gases beschreiben, den Diffusionskoeffizienten, den Viskositätskoeffizienten, die Wärmeleitfähigkeit und den thermischen Diffusionsparameter. Es wird eine Chapman-Enskog-Entwicklung des hier vorgestellten Modells durchgeführt, um drei dieser vier physikalischen Größen zu bestimmen. Zusatzlich werden mehrere mögliche Erweiterungen zu einem ES-BGK-Modell für Gasgemische vorgeschlagen um die vierte physikalische Größe zu bestimmen. Es wird eine Erweiterung präsentiert, die möglichst einfach gehalten ist, eine intuitive Erweiterung, die den Fall einer Gassorte ähnelt und eine Erweiterung, die die physikalische Motivation des Physikers Holway, der das ES-BGK-Modell erfunden hat, berücksichtigt. Es wird gezeigt, dass die Erweiterungen die Erhaltungseigenschaften erfüllen, alle Temperaturen positiv sind und das H-Theorem erfüllt ist.
Als dritte Anwendung wird das hier vorgestellte Modell zu einem Modell für Moleküle mit zusätzlichen inneren Freiheitsgraden erweitert. Die zwei Gassorten dürfen dabei eine unterschiedliche Anzahl an inneren Freiheitsgraden haben und werden beschrieben durch ein System von kinetischen ES-BGK-Gleichungen. Es wird gezeigt, dass das Modell die Erhaltungseigenschaften erfülllt, dass alle Temperaturen positiv sind und dass das H-Theorem erfüllt ist. Für numerische Zwecke wird die Chu-Reduktion angewandt um die Komplexität des Modells zu reduzieren und eine Anwendung gezeigt, bei dem eine Gassorte keine inneren Freiheitsgrade hat und die andere Sorte zwei Rotationsfreiheitsgrade besitzt.
Als letztes wird der Grenzwert des hier vorgestellten Modells zu den dissipativen Eulergleichungen bewiesen. / The present thesis considers the modelling of gas mixtures via a kinetic description. Fundamentals about the Boltzmann equation for gas mixtures and the BGK approximation are presented. Especially, issues in extending these models to gas mixtures are discussed. A non-reactive two component gas mixture is considered. The two species mixture is modelled by a system of kinetic BGK equations featuring two interaction terms to account for momentum and energy transfer between the two species. The model presented here contains several models from physicists and engineers as special cases. Consistency of this model is proven: conservation properties, positivity of all temperatures and the H-theorem. The form in global equilibrium as Maxwell distributions is specified. Moreover, the usual macroscopic conservation laws can be derived.
In the literature, there is another type of BGK model for gas mixtures developed by Andries, Aoki and Perthame, which contains only one interaction term. In this thesis, the advantages of these two types of models are discussed and the usefulness of the model presented here is shown by using this model to determine an unknown function in the energy exchange of the macroscopic equations for gas mixtures described in the literature by Dellacherie. In addition, for each of the two models existence and uniqueness of mild solutions is shown. Moreover, positivity of classical solutions is proven.
Then, the model presented here is applied to three physical applications: a plasma consisting of ions and electrons, a gas mixture which deviates from equilibrium and a gas mixture consisting of polyatomic molecules.
First, the model is extended to a model for charged particles. Then, the equations of magnetohydrodynamics are derived from this model. Next, we want to apply this extended model to a mixture of ions and electrons in a special physical constellation which can be found for example in a Tokamak. The mixture is partly in equilibrium in some regions, in some regions it deviates from equilibrium. The model presented in this thesis is taken for this purpose, since it has the advantage to separate the intra and interspecies interactions. Then, a new model based on a micro-macro decomposition is proposed in order to capture the physical regime of being partly in equilibrium, partly not. Theoretical results are presented, convergence rates to equilibrium in the space-homogeneous case and the Landau damping for mixtures, in order to compare it with numerical results.
Second, the model presented here is applied to a gas mixture which deviates from equilibrium such that it is described by Navier-Stokes equations on the macroscopic level. In this macroscopic description it is expected that four physical coefficients will show up, characterizing the physical behaviour of the gases, namely the diffusion coefficient, the viscosity coefficient, the heat conductivity and the thermal diffusion parameter. A Chapman-Enskog expansion of the model presented here is performed in order to capture three of these four physical coefficients. In addition, several possible extensions to an ellipsoidal statistical model for gas mixtures are proposed in order to capture the fourth coefficient. Three extensions are proposed: An extension which is as simple as possible, an intuitive extension copying the one species case and an extension which takes into account the physical motivation of the physicist Holway who invented the ellipsoidal statistical model for one species. Consistency of the extended models like conservation properties, positivity of all temperatures and the H-theorem are proven. The shape of global Maxwell distributions in equilibrium are specified.
Third, the model presented here is applied to polyatomic molecules. A multi component gas mixture with translational and internal energy degrees of freedom is considered. The two species are allowed to have different degrees of freedom in internal energy and are modelled by a system of kinetic ellipsoidal statistical equations. Consistency of this model is shown: conservation properties, positivity of the temperature, H-theorem and the form of Maxwell distributions in equilibrium. For numerical purposes the Chu reduction is applied to the developed model for polyatomic gases to reduce the complexity of the model and an application for a gas consisting of a mono-atomic and a diatomic gas is given.
Last, the limit from the model presented here to the dissipative Euler equations for gas mixtures is proven.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:16107 |
Date | January 2018 |
Creators | Pirner, Marlies |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-sa/4.0/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds