Convergence of quantitative genetics and genomics is becoming the way that fundamental genetics and applied breeding will be carried out in the next decades. This study bridges the quantitative genetics of complex growth and wood properties traits with genomic technologies towards a more innovative approach to tree breeding. Planted forests play a major role to fulfill the growing world demand for wood products and energy. Eucalypts stand out for their high productivity and versatile wood resulting from the advanced breeding programs associated to clonal propagation and modern silviculture. Despite their fast growth, breeding cycles still take several years and wood properties assessment is limited to a sample of trees in the late stages of selection due to the costs involved in wood phenotyping, not exploitingthe range of genetic variation in wood properties. In this study, we examined fifteen traits including growth and wood chemical and physical properties in 1,000 individuals sampled from an elite Eucalyptus breeding population. Near-infrared spectroscopy (NIRS) models were developed and used for high-throughput phenotyping of wood traits.Highdensity data for 29,090 SNPs was used to obtain accurate pedigree-record-free estimates of trait variance components, heritabilities, genetic and phenotypic correlations, based on a realized relationship matrix, comparing them to pedigree-based estimates. To the best of our knowledge, this is the first study to do this in plants. NIRS predictions were accurate for wood chemical traits and wood density, and variably successful for physical traits. Heritabilities were medium for growth (0.34 to 0.44), high for wood chemical traits (0.56 to 0.85) and variable for wood physical traits (0.11 to 0.63). High positive correlations among growth traits and negative between cellulose and lignin content were observed, while correlations between wood chemical and physical traits and between growth and wood quality traits were low although significant. Phenotypes and SNP markers were then used to build genomic predictive models using a marker density higher than any previous genomic selection study in trees (1 SNP/21 kbp). Two models (RR-BLUP and Bayesian LASSO) that differ regarding the assumed distribution of marker effects were used for genomic predictions. Predictions were compared to those obtained by phenotypic BLUP. Predictive abilities very similar by the two models and strongly correlated to the heritabilities. Accurate genomic-enabled predictions were obtained for wood chemical traits related to lignin, wood density and growth, although generally 15 to 25% lower than those achieved by phenotypic BLUP prediction. Nevertheless, genomic predictions yielded a coincidence above 70% in selecting the top 30 trees ranked by phenotypic selection for growth, wood density and S:G ratio, and 60% when tandem selection was applied. The results of this study open opportunities for an increased use of highthroughput NIRS phenotyping and genome-wide SNP genotyping in Eucalyptus breeding, allowing accurate pedigree-record-free estimation of genetic parameters and prediction of genomic breeding values for yet to be phenotyped trees. These applications should become routine in tree breeding programs for the years to come, significantly reducing the length of breeding cycles while optimizing resource allocation and sustainability of the breeding endeavor. / A convergência da genética quantitativa com a genômica está se tornando a maneira pela qual a genética fundamental e aplicada serão conduzidas nas próximas décadas. Este estudo buscou conectar a genética de fenótipos complexos de crescimento e propriedades de madeira às tecnologias genômicas, em uma abordagem inovadora para o melhoramento florestal. Florestas plantadas têm papel fundamental para satisfazer a crescente demanda mundial por produtos madeireiros e energia. O eucalipto,com sua alta produtividade e madeira versátil, é resultado de programas avançados de melhoramento associados à propagação clonal e silvicultura moderna. Apesar de seu rápido crescimento, ciclos de melhoramento ainda levam muitos anos e a avaliação detalhada de propriedades da madeira é limitada a apenas uma amostra das árvores em estágios avançados de seleção, devido aos altos custos de fenotipagem, não explorando assim toda a variação genética disponível. Neste estudo, examinamos quinze caracteres, incluindo crescimento e propriedades químicas e físicas da madeira, em 1000 indivíduos amostrados de uma população elite de melhoramento. Modelos de espectroscopia de infravermelho próximo (NIRS) foram desenvolvidos e utilizados para fenotipagem de alto desempenho de propriedades de madeira. Genotipagem de alta densidade com 29.090 SNPs foi utilizada para obter estimativas acuradas de componentes de variância, herdabilidades e correlações genéticas baseadas em uma matriz de parentesco realizado, ou seja,sem o uso de pedigree. Este é o primeiro estudo de que temos conhecimento a fazer isso em plantas. Predições NIRS foram precisas para caracteres químicos da madeira e densidade, e apresentaram sucesso variável para caracteres físicos. As herdabilidades foram médias para crescimento (0,34 a 0,44), altas para caracteres químicos de madeira (0,56 a 0,85) e variáveis para caracteres físicos da madeira (0,11 a 0,63). Altas correlações positivas entre caracteres de crescimento e negativas entre celulose e lignina foram observadas, enquanto correlações entre caracteres químicos e físicos da madeira foram baixas, porém significativas. Fenótipos e marcadores SNP foram em seguida utilizados na construção de modelos preditivos com a maior densidade de marcadores já utilizada em estudos de seleção genômica em espécies florestais (1 SNP/21 kpb). Dois modelos de predição (RR-BLUP e LASSO Bayesiano)foram usados nas predições genômicas e comparados ao BLUP fenotípico. Os modelos apresentaram capacidades preditivas similares, fortemente correlacionadas às herdabilidades. Predições genômicas precisas foram obtidas para caracteres relacionados à lignina, densidade e crescimento, embora geralmente 15 a 25% menores do que as predições obtidas por BLUP fenotípico. Contudo, predições genômicas alcançaram coincidências acima de 70% na seleção das melhores 30 árvores ranqueadas pela seleção fenotípica para crescimento, densidade e relação S:G, e de 60% quando seleção em tandem foi aplicada. Os resultados deste estudo abrem enormes oportunidades para o uso combinado de fenotipagem NIRS e genotipagem com SNPs no melhoramento do eucalipto, permitindo estimativas acuradas de parâmetros genéticos e a predição de valores genéticos genômicos para plantas jovens ainda não fenotipadas. Estas aplicações deverão se tornar rotineiras nos programas de melhoramento florestal nos próximos anos, reduzindo significativamente a duração dos ciclos de seleção e, consequentemente, otimizando a alocação de recursos e a sustentabilidade do melhoramento.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-25062014-085814 |
Date | 25 April 2014 |
Creators | Bruno Marco de Lima |
Contributors | Roland Vencovsky, Dario Grattapaglia, Aurelio Mendes Aguiar, Alexandre Siqueira Guedes Coêlho, Dario Grattapaglia, Mario Luiz Teixeira de Moraes |
Publisher | Universidade de São Paulo, Agronomia (Genética e Melhoramento de Plantas), USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds