Return to search

Three-dimensional Characterization of Inherent and Induced Sand Microstructure

In the last decade, a significant amount of research has been performed to characterize the microstructure of unsheared and sheared triaxial sand specimens to advance the understanding of the engineering behavior of soils. However, most of the research has been limited to two-dimensional (2-D) image analysis of section planes that resulted in loss of information regarding the skeleton of the soil (pore structure) and other attributes of the three-dimensional (3-D) microstructure. In this research, the 3-D microstructures of triaxial test specimens were, for the first time, characterized. A serial sectioning technique was developed for obtaining 3-D microstructure from 2-D sections of triaxial test specimens. The mosaic technique was used to get high-resolution large field of view images. Various 3-D characterization parameters were used to study the microstructures of the specimens.

To study the preparation method induced variation in soil microstructure, two specimens prepared with air pluviation and moist tamping methods were preserved with epoxy impregnation. A coupon was cut from the center of each specimen, and following a serial sectioning and image capture process, the 3-D structure was reconstructed. To study the evolution of structure during shearing tests, two additional specimens prepared to the same initial conditions with the same methods were subjected to axial compression loading under constant confining pressure up to an axial strain level of 14%. After shearing, the structure of these specimens were also preserved and analyzed following the same procedures as the unsheared specimens. The evolution of the pore structures was investigated accordingly.

It was found that generally, moist tamped specimens were initially less uniform but had a more isotropic structure than air pluviated specimens. The standard deviations of 2-D local void ratio and 3-D pore size in dilated regions of sheared air pluviated and moist-tamped specimens were found to be smaller than those of as-consolidated specimens at a given void ratio. Tortuosity decreased with increasing pore size. It was also evident that the soil structures evolved differently depending on the initial structure. Comparison between 2-D and 3-D results indicated that it is not sufficient to use 2-D section information for characterizing some microstructural features.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7557
Date28 November 2005
CreatorsYang, Xuan
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format4634707 bytes, application/pdf

Page generated in 0.0026 seconds