The phenotype-linked fertility hypothesis predicts that both, male carotenoid-based sexual ornamentation and their spermatozoa are phenotypically plastic and may be co-affected by the environment. One of the factors affecting their phenotype may be oxidative stress and the ability of organism to eliminate its effect. Oxidative stress may reduce sperm quality because sperm lack the ability to repair DNA, but it can also affect spermatogenesis itself. However, some substances may function as antioxidants, and thus eliminate effect of reactive oxygen species (oxidative stress) in the body. In this study, adult zebra finch males (Taeniopygia guttata) originating from the domesticated and recently wild-derived populations were exposed to the diquat (D), which enhances the oxidative stress, and carotenoid lutein (L), which could have an antioxidant function. Experimental design had factorial character 2x2 with a control (group L, D, LD, control). Neither oxidative stress, carotenoids, nor their interactions affected sperm morphology or velocity and it also did not increase abnormal sperm proportion in the ejaculate. However, the differences were observed at the molecular level, where by inducing the oxidative stress, the sperm had reduced signal intensity of acetylated α-tubulin in the sperm tails....
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:380194 |
Date | January 2018 |
Creators | Bílková, Karolína |
Contributors | Albrecht, Tomáš, Jonáková, Věra |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds