Return to search

Interaction gaz/surface pour les matériaux des composants face au plasma d'ITER / Gas/surface interaction for plasma facing components relevant for ITER

Le projet expérimental international ITER vise à tester la faisabilité de la fusion nucléaire en tant que source d'énergie. Le banc d'essai sera un tokamak où le deutérium et le tritium seront fusionnés et des ions d'hélium et des neutrons énergétiques seront produits. Une partie de l'énergie produite sera déposée dans la zone divertor. Afin de préserver le divertor en tungstène d'ITER, il est envisagé d‘injecter de l'azote au niveau du divertor afin de rayonner plus uniformément la charge d'énergie. Ce mode opérationnel soulève plusieurs questions. Tout d'abord, comment la rétention du combustible de fusion (deutérium et tritium) dans les premières parois de tokamak sera-t-elle affectée? En particulier, est-ce que l'azote implanté agira comme une barrière à la désorption pour le tritium? Deuxièmement, à quelle production d'ammoniac peut-on s‘attendre due aux processus réactifs sur les matériaux des premières parois? Cette thèse présente une étude approfondie de l'interaction du tungstène avec le deutérium et l'azote, avec l‘examen de plusieurs facteurs clés: la rétention de l'azote et du deutérium en fonction de la fluence; l'évolution dynamique de la rétention d‘atomes de deutérium après l'implantation; l'influence de l'azote pré-implanté sur la rétention de deutérium; et la détermination quantitative de l‘ammoniac produit après une implantation séquentielle d‘azote et de deutérium dans le tungstène. Une attention particulière est donnée à l'identification précise des mécanismes de piégeage pour chacune des deux espèces de gaz (azote et deutérium) dans le tungstène. / The international experimental project ITER aims to test the feasibility of nuclear fusion as an energy source. The test bed will be a tokamak reactor where deuterium and tritium will be fused and energetic helium ions and neutrons will be released. A part of the produced energy will be exhausted in the divertor area of the tokamak. In order to preserve the tungsten divertor of ITER, it is envisioned to use nitrogen injection above the divertor in order to radiate more evenly the incident power loads. This operational plan raises several issues. Firstly, how the retention of fusion fuel (deuterium and tritium) in the tokamak first walls will be affected? In particular, does the implanted nitrogen act as a desorption barrier for tritium? Secondly, how much production of ammonia can be expected from reactive processes on the first wall materials? This thesis presents an extensive study of the interaction of tungsten with deuterium and nitrogen, with several key factors being investigated: the nitrogen and deuterium retention as a function of fluence; the dynamic evolution of retained deuterium atoms after implantation; the influence of the pre-implanted nitrogen on deuterium retention; and the amounts of ammonia that are produced on tungsten after sequential implantation of nitrogen and deuterium. A special focus is directed towards identifying the exact trapping mechanisms for each of the two gas species (nitrogen and deuterium) in tungsten.

Identiferoai:union.ndltd.org:theses.fr/2017AIXM0440
Date15 November 2017
CreatorsGhiorghiu, Florin
ContributorsAix-Marseille, Angot, Thierry, Bisson, Regis
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.029 seconds