Les tubes des générateurs de vapeur des centrales nucléaires vibrent sous l'effet d'écoulement eau/vapeur. Pour appréhender ce phénomène et le comprendre, des expériences à échelles réduites sont réalisées. La simulation numérique a montré son habilité à reproduire l'interaction fluide-structure sur ce type de géométrie pour des écoulements monophasiques. L'objectif est désormais de faire de même en écoulement diphasique et de caractériser les propriétés physiques du mélange liquide/gaz influant sur la vibration.Pour se faire, un code CFD avec une approche bi-fluide est utilisé. Une méthode dite de "Discrete forcing" est implémentée pour permettre le mouvement imposé de corps solides au sein d'un écoulement à plusieurs phases. Celle-ci est alros validée sur des cas simples et intégraux avec une comparaison systématique à des résultats expérimentaux ou théoriques.En se basant sur un algorithme implicite existant dans la littérature, un couplage fluide-structure utilisant cette méthode de suivi d'interface est implémenté. Validé sur des cas monophasiques et diphasiques, ce couplage offre désormais la possibilité de déplacer un solide en fonction des forces fluides diphasiques qui lui sont appliquées.Les différentes méthodes numériques présentes dans NEPTUNE_CFD sont ensuite évaluées pour un écoulement fréon/fréon au travers d'un faisceau de tubes inclinés. La nécessité d'utiliser des modèles dit "multi-régime" est mis en avant.Afin de déterminer l'influence sur l'écoulement des différentes propriétés physiques d'un mélange diphasique, plusieurs cas simples sont réalisés.Finalement, l'application industrielle cible, un écoulement eau/fréon dans un faisceau de tubes à pas carré, est simulée et comparée à un écoulement en conditions réelles (eau/vapeur à 70 bar). Les vibrations induites par écoulement monophasique puis diphasique sont correctement reproduites sur des cas dit de "faisabilité". / In nuclear power plants, steam generator tubes vibrate because of steam/water cross-flows. In order to understant this phenomenon, reduced-scale experiments are performed. Numerical simulations have shown their ability to accurately reproduce the vibration induced by a single phase flow in a tube bundle. The aim of the present work is to do the same with two-phase flow and to characterize the effect of the mixture physical properties on vibration.To do so, a CFD code based on a two-fluid approach is used. A "discrete forcing" method is implemented in order to allow solid body motion in a two-phase flow. The validation is performed with simple and industrial cases using experimental and theoretical results.Using an existing implicit algorithm, a fluid-structure coupling based on the developed interface tracking method is implemented. Validated for single and two-phase flows, it is now possible to have solid motion induced by fluid forces.The different numerical models dedicated to two-phase flows are then evaluated on a freon/freon flow across an inclined tube bundle. The use of a multi-regime model is required. In order to investigate the role of the different physical properties on the vibration, three simple studies are performed.Finally, the industrial application, a freon/water flow across a square pitch tube bundle, is performed. First, it is compared to a steam/water flow in order to characterize the discrepancies when we are using a modeling mixture. Then, the vibration induced by single- and two-phase flows is reproduced by the developed method on feasibility test cases.
Identifer | oai:union.ndltd.org:theses.fr/2018SACLY014 |
Date | 08 November 2018 |
Creators | Benguigui, William |
Contributors | Université Paris-Saclay (ComUE), Longatte, Élisabeth |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0016 seconds