Plusieurs réponses cellulaires aux stimuli extracellulaires sont transmises par des voies de signalisation qui agissent en aval de récepteurs membranaires tels les récepteurs tyrosine kinase (RTK). Les signaux provenant des RTK sont souvent relayés via des protéines adaptatrices comme NCK1 (Non-Catalytic region of tyrosine Kinase 1) et NCK2 dont les fonctions sont considérées redondantes et indissociables. Toutefois, certaines études suggèrent que chacune de ces deux protéines pourraient avoir des cibles cellulaires spécifiques et des fonctions uniques. L’objectif de mon projet de doctorat était d’analyser la spécificité des protéines NCK1/2, c’est-à-dire d’identifier pour chacune des cibles uniques, pour ensuite caractériser ce qui génère cette spécificité tout en définissant la fonction de ces interactions. En premier lieu, j’ai utilisé deux techniques complémentaires de protéomique, soit (i) des purifications d’affinité (AP) et (ii) du marquage de proximité in vivo (BioID) suivies d’analyses en spectrométrie de masse (MS) afin de caractériser les interactomes respectifs de NCK1/2. La combinaison de ces deux approches m’a permis d’identifier plus d’une centaine d’interactions spécifiques pour chaque NCK. Des analyses bio-informatiques basées sur ces résultats m’ont permises de mettre en évidence que NCK2 semble plus spécifiquement impliquée que NCK1 dans la régulation de l’organisation du cytosquelette d’actine, structure essentielle lors de la division et de la cytokinèse. En comparant simultanément des cellules fibroblastiques murines (MEF) déplétées soit pour NCK1, soit pour NCK2, j’ai remarqué que les cellules Nck2-/-, à l’inverse des cellules Nck1-/- étaient plus multinucléées et présentent un midbody altéré en longueur. Également, j’ai remarqué une altération dans la composition du midbody des cellules Nck2-/- tel que suggéré par l’absence dans cette structure des protéines Polo-like kinase1 (PLK1), Epithelial cell transforming 2 (ECT2) ou encore Aurora B (AURKB), régulateurs clefs de la cytokinèse. Finalement, j’ai montré que la fonction de NCK2 durant la cytokinèse repose principalement sur son domaine SH2. Dans un deuxième temps, j’ai sélectionné 27 partenaires identifiés en MS et confirmé par une méthode orthogonale leurs interactions respectives avec NCK1 et/ou NCK2. Grâce à des tests de liaison in vitro, j’ai déterminé que plusieurs protéines dont la Plakophiline 4 (PKP4), un régulateur de la cytokinèse, lient directement et spécifiquement NCK2. Par différentes expériences in vitro, j’ai pu déterminer que NCK2 lie les portions N-terminale et centrale de PKP4 grâce à son domaine Src Homology (SH) 2 et que la spécificité de NCK2 envers PKP4 ne semble pas dépendre seulement des propriétés intrinsèques du SH2. L’association résulte plutôt de la combinaison d’une partie ou de l’ensemble des propriétés des domaines et régions interdomaines constituant les protéines NCK1/2. En conclusion, bien que les fonctions de NCK1/2 soient généralement considérées comme redondantes, mes résultats démontrent que ces protéines sont capables de lier des partenaires différentspour réguler des fonctions biologiques distinctes. Ainsi, mes travaux suggèrent que NCK2 semble spécifiquement requise lors du processus de cytokinèse. De plus, l’ensemble de mes expériences in vitro apporte une première idée du mécanisme de spécificité des protéines NCK1/2 en suggérant que leur spécificité ne semble pas entièrement provenir des propriétés intrinsèques de leurs domaines individuels, mais plutôt d’une combinaison des propriétés de leurs domaines et/ou régions interdomaines respectives. / Signals from cell surface receptors are often relayed via adaptor proteins that can serve as hubs to recruit appropriate target signaling molecules and guide signals along specific pathways. Among these, adaptor proteins NCK1 (Non-Catalytic region of tyrosine Kinase 1) and NCK2 have functions that are often considered redundant and/or indistinguishable. The main goal of my work was to demonstrate that NCK1 and NCK2 are not fully redundant and may each display functional specificity. To achieve this, I delineated NCK1-and NCK2-specific signalling networks, identified for each unique target, then characterized what generates this specificity and obtained the function of these interactions. First, to identify the complement of interaction partners for NCK1 and NCK2, I used two unbiased mass spectrometry (MS)-based approaches: (i) epitope-tagged protein affinity purification (AP) followed by MS analysis and (ii) in vivo proximity labelling (BioID). The combination of these two approaches allowed me to identify more than one hundred specific interactions for each NCK. Bioinformatics analyzes based on the specific partners identified in MS enabled me to highlight that NCK2 was more specifically involved in the regulation of the actin cytoskeleton organization, structure essential for cell division and cytokinesis. By simultaneously comparing mouse embryo fibroblasts (MEF) depleted either for NCK1 or NCK2, I noticed that Nck2-/-, but not Nck1-/-cells are multi-nucleated and display extended protrusions reminiscent of intercellular bridges, which correlate with an extended time spent in cytokinesis as well as a failure of a significant proportion of cells to complete abscission. Further analysis of this phenotype revealed that the midbody of NCK2-deficient cells is not only increased in length, but also altered in composition, as judged by the mislocalization of the Polo-like kinase 1 (PLK1), Epithelial cell transforming 2 (ECT2) and Aurora B (AURKB) proteins. Moreover, I showed that NCK2 function during cytokinesis requires its SH2 domain. Second, to underline the molecular mechanism of specific protein complex formation, I selected based on my MS results 27 partners to confirm by an orthogonal method their respective interactions with NCK1 and/or NCK2. By using in vitro binding assays, I was able to determine that several proteins including Plakophilin 4(PKP4), a key regulator of the cytokinesis process, were able to bind directly and specifically to NCK2. Through various in vitro experiments, I was able to determine that NCK2 binds the N-terminal and central portions of PKP4 through its SH2 domain and that the specificity of PKP4 toward NCK2 does not appear to result from the intrinsic properties of its SH2 alone. This association seems to result from the combination of some or all of the properties of the individual domains and inter-regions constituting the NCK1/2 proteins. In conclusion, despite what is generally accepted, I showed that both NCK1 and NCK2 may form specific protein complexes, thus reflecting the functional specificity of these two adaptor proteins. I further demonstrated that NCK1 and NCK2 are not completely redundant. I also shed light on a previously uncharacterized function for the NCK2 adaptor protein in cell division. Finally, my in vitro experiments provide an explanation for the specificity mechanism of NCK1/2 adaptor proteins by suggesting that their specificity come from the combination of the properties of their respective domains and/or interdomain regions.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/35439 |
Date | 11 July 2019 |
Creators | Jacquet, Kevin |
Contributors | Bisson, Nicolas |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xx, 182 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0125 seconds