Au sein d'un organisme les cellules se divisent et assurent la croissance, la différentiation et l'homéostasie des tissus. Des travaux récents proposent qu'elles communiquent activement entre voisines au sein des organes solides pour coordonner leur propre division et la préservation de l'intégrité tissulaire. Nous proposons que la signalisation Eph-éphrine, acteur de la communication cellulaire locale, participe à cette coordination entre division cellulaire et cohésion du tissu. Au cours de ma thèse, j'ai démontré dans plusieurs modèles cellulaires que la signalisation Eph-éphrine contrôle la division cellulaire et peut induire des retards dans l'abscission et de la polyploïdie. J'ai prouvé par vidéomicrosocpie que ces défauts d'abscission dépendent du domaine catalytique du récepteur EphB2 et de l'activation de la protéine tyrosine kinase relais c-Src. En cascade, c-Src phosphoryle un régulateur clé de la stabilité du pont intercellulaire, la protéine citron kinase (CitK). J'ai également observé que CitK était anormalement localisé durant la cytocinése en aval de la voie Eph. Par des essais kinase in vitro, j'ai exclu une phosphorylation directe de CitK par le récepteur Eph et identifié c-Src comme capable de phosphoryler directement CitK. J'ai identifié les résidus tyrosines de CitK phosphorylés par c-Src, mutés deux d'entre eux et à l'aide d'analyses de sauvetage phénotypique, démontré que ces résidus étaient nécessaires et suffisants pour induire des défauts d'abscission. J'ai ensuite validé in vivo ce rôle original de la voie Eph-éphrine, dans le contexte du développement neuronal chez la souris. Plusieurs membres de la famille des Eph-éphrines sont exprimés dans les progéniteurs neuraux à l'origine des neurones corticaux et des auteurs ont montrés que CitK contrôle la cytocinèse de ces cellules. En utilisant un système Cre-lox, j'ai spécifiquement éteint la signalisation Eph dans ces progéniteurs et observé une modification de la ploïdie neuronale dans ces animaux. J'ai également observé dans les progéniteurs neuraux une co-localisation physiologique de résidus tyrosines phosphorylés et de la protéine CitK, qui adopte un enrichissement apical caractéristique. Ces résultats suggèrent notamment que la signalisation Eph-éphrine pourrait contrôler l'abscission des progéniteurs neuraux via la phosphorylation de CitK. La cytocinèse est aujourd'hui décrite comme un processus cellulaire autonome orchestré par la machinerie intracellulaire. Les résultats obtenus durant mon doctorat suggèrent que la cytocinèse est également régulée par l'environnement local de la cellule comme j'en ai fait la démonstration avec la signalisation Eph-éphrine. D'autre part, mes travaux suggèrent que la phosphorylation de CitK sert d'interrupteur moléculaire durant la progression à travers la division cellulaire et le contrôle de la ploïdie des neurones. / Cells within an organism successfully divide to ensure growth, differentiation and homeostasie. Recent work suggests that dividing cells actively communicate with neighbours thus spatially and temporally coordinating cell division while maintaining tissue cohesiveness. We hypothesized that Eph-ephrin signalling, a local cell-cell signalling pathway, could participate in coordinating cell division within a tissue. Using vertebrate and invertebrate cell culture models I showed that Eph-signalling controls cell division and induces delay in the abscission of nascent daughter cells as well as polyploidy. Using time-lapse imaging I proved that the Eph-mediated abscission failure depends on the catalytic activity of the receptor via the non receptor tyrosine kinase relay molecule c-Src. Downstream of Eph signalling c-Src phosphorylates the protein citron kinase (CitK) a well known regulator of intercellular bridge stability. I also observed that CitK was abnormally localized during cytokinesis when Eph signalling was active. Further, using in vitro kinase assays, I demonstrated that Eph does not directly phosphorylate CitK but that c-Src could do so. In addition, using Mass Spectrometry I mapped all tyrosine residues directly phosphorylated by c-Src. I mutated two of them located in the Rho binding domain of CitK and demonstrated that phosphorylation of those residues are necessary and sufficient to induce cytokinesis failure. I validated in vivo this novel role of Eph-ephrin signalling in a physiological context in the developing mouse neocortex. Members of the Eph/ephrin family are expressed in neural progenitors that give rise to neurons of the cortex upon neurogenic division. Importantly, CitK has been shown by others to control cytokinesis of these progenitor cells. Using the Cre-lox system, I specifically turned off Eph forward signalling in neural progenitor cells and observed an alteration of neuronal ploidy in these mutant animals. Further, I also observed that CitK which adopts a particular apical localisation in neural progenitors physiologically co-localized with phosphorylated tyrosine residues. Altogether, these results suggest that Eph-ephrin signalling controls abscission of neural progenitors by promoting phosphorylation of CitK. The textbook view of cytokinesis is that it is a cell autonomous event orchestrated by the intracellular machinery. Data obtained during my PhD suggest that cytokinesis is also regulated by local environment, here Eph/ephrin signalling, and that phosphorylation of CitK may represent a molecular switch in the normal progression of cell division and in the control of neuronal ploidy.
Identifer | oai:union.ndltd.org:theses.fr/2015TOU30102 |
Date | 01 July 2015 |
Creators | Jungas, Thomas |
Contributors | Toulouse 3, Davy, Alice |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0031 seconds