Return to search

THE ROLE OF CELL SURFACE GRP78 AND ANTI-GRP78 AUTOANTIBODIES IN THE DEVELOPMENT AND PROGRESSION OF ATHEROSCLEROTIC LESIONS

Damage to the endothelium is an important contributor to the initiation and progression of atherosclerosis. GRP78 is an endoplasmic reticulum (ER)-resident molecular chaperone in normal healthy endothelium that functions to assist in the correct folding of newly synthesized proteins and to prevent the aggregation of folding intermediates. In addition, GRP78 is present as a transmembrane protein on the surface of lesion-resident endothelial cells. Surface GRP78 is known to act as a surface signaling receptor in cancer cells and is activated by anti-GRP78 autoantibodies (GRP78a-Abs) isolated from the serum of cancer patients. However, the role of cell surface GRP78 on endothelial cells and the influence of GRP78a-Abs in atherosclerosis is unknown. The objectives of this study were to investigate the effects of GRP78a-Abs on lesion development, examine whether engagement of cell surface GRP78 by GRP78a-Abs modulates endothelial cell function, and determine whether GRP78a-Abs were associated with cardiovascular disease (CVD) in humans. This research showed that ApoE-/- mice with advanced atherosclerotic lesions have elevated serum levels of GRP78a-Abs and ApoE-/- mice immunized against recombinant GRP78 demonstrated a significant increase in GRP78a-Abs titers as well as accelerated lesion growth. Furthermore, this work demonstrated that activation of surface GRP78 on endothelial cells by GRP78a-Abs significantly increases gene expression of adhesion molecules ICAM-1 and VCAM-1 as well as leukocyte adhesion through the NFκB pathway. Additionally, middle-aged to elderly adults at risk for CVD showed a tendency toward elevated circulating GRP78a-Ab levels. Our results suggest that signaling through cell surface GRP78 can activate intracellular pathways that contribute to endothelial cell activation and augment atherosclerotic lesion development. These findings demonstrate a novel role for GRP78a-Abs and surface GRP78 receptor activity in endothelial cell function and the early stages of lesion development, as well as establish an initial framework for future work involving circulating GRP78a-Abs and atherosclerotic disease in humans. Furthermore, this work indicates inhibiting the interaction of GRP78a-Abs with cell surface GRP78 could present a novel therapeutic strategy to modulate lesion growth, thereby reducing the risk for atherosclerosis and cardiovascular disease. / Thesis / Doctor of Philosophy (PhD)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/19218
Date January 2016
CreatorsCrane, Elizabeth
ContributorsAustin, Richard, Biochemistry and Biomedical Sciences
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds