Harvested rainwater is an alternative water resource that can be utilized to help meet the world's growing demand for fresh water. Although harvested rainwater is often considered to have adequate physical and chemical qualities, its microbial quality has been found lacking. This study sought to better understand the effect of common treatment processes on the quality of harvested rainwater for potable use by examining two treatment processes: (1) batch chlorination followed by filtration, and (2) filtration followed by ultraviolet (UV) irradiation. The batch chlorination studies used rainwater harvested from four pilot-scale roofs in Austin, Texas with different roofing materials: concrete tile, green, Galvalume[Trademark] metal, and asphalt-fiberglass shingle. Chlorine tends to react with natural organic matter and produce disinfection byproducts (e.g., trihalomethanes (THMs)) that are harmful to human health. Chlorinating rainwater harvested from the metal and concrete roofs achieved adequate disinfection (total coliforms less than 1 colony forming unit per 100 mL) without forming THMs that exceed the United States Environmental Protection Agency (USEPA) limit of 80 [mu]g/L for public water systems. Chlorinating rainwater harvested from the shingle roof achieved adequate disinfection but had the potential to form excessive THMs. Chlorinating rainwater harvested from the green roof, which had the highest concentration of dissolved organic carbon, did not achieve adequate disinfection and formed THMs that were four times higher than the USEPA limit. Filtering the chlorinated rainwater from every roofing material with a block activated carbon filter generally resulted in increased bacteria concentrations and decreased THM concentrations. To study the effect of UV irradiation, cistern-stored and treated rainwater were sampled from a full-scale residential system in Austin, Texas, where the owner uses rainwater as his primary potable water supply. UV irradiation at the full-scale system effectively disinfected rainwater when the turbidity and total coliform concentrations were low, but disinfection was compromised as these two parameters increased as the drought progressed in 2011 and the ambient temperature increased. This research suggests that under certain conditions, treatment by either chlorination or UV irradiation can improve the quality of harvested rainwater so that it conforms to drinking water standards for public water systems. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2012-05-5825 |
Date | 25 June 2012 |
Creators | Keithley, Sarah Elizabeth |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.0018 seconds