Breeding compact cotton plants is desirable for many reasons, but current research for this is restricted by manual data collection. Using unmanned aircraft system imagery shows potential for high-throughput automation of this process. Using multispectral orthomosaics and ground truth measurements, I developed supervised models with a wide range of hyperparameters to predict three compactness traits. Extreme gradient boosting using a feature matrix as input was able to predict the height-related metric with R2=0.829 and RMSE=0.331. The breadth metrics require higher-detailed data and more complex models to predict accurately.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-7006 |
Date | 08 December 2023 |
Creators | Waldbieser, Joshua Carl |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0019 seconds