The increasing demand for more sustainable construction has led to the development of new structural systems that include wood as building material. Cross laminated timber (CLT) has been identified as a potential system to address this need and to provide alternative options in the range of low- to medium-rise construction. The appeal in using CLT as a shearwall is driven by the combination of the rigid panels and small dimension fasteners, which allows for significant energy dissipation in the structure. However, there is currently no reliable analytical model to accurately predict the behaviour of multi-segment CLT shearwalls.
The current study aims to develop an analytical model capable of predicting the elastic and plastic phases associated with the behaviour of multi-panel CLT shearwalls. The model describes the wall behaviour as a function of the connectors’ properties in terms of stiffness, strength and ductility. This dependency means that the only input required in the model is the behavioural parameters of the connections. The proposed model contains six cases with a total of 36 different failure mechanisms. Two final wall behaviours were developed, and it was found that behaviour (i.e. single wall) could be achieved if the yielding in the hold-down occurred prior to yielding in the panel joints. Inversely, the other behaviour (i.e. coupled panels) was achieved if the yielding in the vertical joint occur prior to yielding in the hold-down. The analytical model was validated using a numerical model, and the results of the comparison showed very close match between the two models.
The study proposed simplified design provisions with the aim to optimize the walls ductility (CP behaviour) or strength and stiffness (SW behaviour).
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/36999 |
Date | January 2017 |
Creators | Nolet, Vincent |
Contributors | Doudak, Ghasan |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0055 seconds