Yes / This paper evaluates the influence of mineral admixtures partially replacing cement, sea sand replacing quartz, sea water replacing fresh water on ultra-high performance concrete (UHPC). The fluidity and mechanical properties were studied. Besides, the impermeability, chloride resistance and freeze-thaw resistance were investigated. Failure modes, scanning electron microscope (SEM) analysis, mass loss, relative dynamic modulus of elasticity and mechanical properties of UHPCs after freeze-thaw cycles were conducted. The results showed the fluidity of UHPC paste gradually increases with the improvement of water-binder ratio. It is recommended that the water-binder ratio of UHPC be set at 0.19. The fluidity also increases with the improvement of the content of slag, fly ash and water reducer, but decreases with the improvement of silica fume content. The flexural and compressive strengths of UHPC enhance with the improvement of the content of silica fume, but reduce with the improvement of the content of fly ash and slag. The UHPCs made of quartz sand, river sand and sea sand, all, achieve a high strength. UHPCs prepared at standard curing conditions, with or without steel fibers, mixed by artificial seawater and made of sea sand, exhibited excellent impermeability and chloride resistance. The frost resistant grade of all UHPC specimens prepared by standard curing are greater than F500 exhibiting excellent freeze-thaw resistance and sustainability.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/19585 |
Date | 13 September 2023 |
Creators | Ge, W., Liu, W., Ashour, Ashraf, Zhang, z., Li, W., Jiang, H., Sun, C., Qiu, L., Yao, S., Lu, W., Liu, Y. |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Article, Published version |
Rights | (c) 2023 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0/), CC-BY |
Page generated in 0.002 seconds