Return to search

Parallel transmission for magnetic resonance imaging of the human brain at ultra high field : specific absorption rate control & flip-angle homogenization

The focus of this thesis lies on the development, and implementation, of parallel transmission (pTx) techniques in magnetic resonance imaging for flip-angle homogenization throughout the human brain at ultra-high field. In order to allow in-vivo demonstrations, a conservative yet viable safety concept is introduced to control the absorbed radiofrequency (RF) power . Subsequently, novel methods for local SAR control and non-selective RF pulse-design are investigated. The impact of these short and energy-efficient waveforms, referred to as kT-points, is first demonstrated in the context of the small-tip-angle domain. Targeting a larger scope of applications, the kT-points design is then generalized to encompass large flip angle excitations and inversions. This concept is applied to one of the most commonly used T1-weighted sequences in neuroimaging. Results thus obtained at 7 Tesla are compared to images acquired with a clinical setup at 3 Tesla, validating the principles of the kT-points method and demonstrating that pTx-enabled ultra-high field systems can also be competitive in the context of T1-weighted imaging. Finally, simplifications in the global design of the pTx-implementation are studied in order to obtain a more cost-effective solution.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00732658
Date17 April 2012
CreatorsCloos, Martijn Anton Hendrik
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0016 seconds