L’analyse de sensibilité (AS) concerne la quantification des changements dans la solution d’un système d’équations aux dérivées partielles (EDP) dus aux varia- tions des paramètres d’entrée du modèle. Les techniques standard d’AS pour les EDP, comme la méthode d’équation de sensibilité continue, requirent de dériver la variable d’état. Cependant, dans le cas d’équations hyperboliques l’état peut présenter des dis- continuités, qui donc génèrent des Dirac dans la sensibilité. Le but de ce travail est de modifier les équations de sensibilité pour obtenir un syst‘eme valable même dans le cas discontinu et obtenir des sensibilités qui ne présentent pas de Dirac. Ceci est motivé par plusieurs raisons : d’abord, un Dirac ne peut pas être saisi numériquement, ce qui pourvoit une solution incorrecte de la sensibilité au voisinage de la discontinuité ; deuxièmement, les pics dans la solution numérique des équations de sensibilité non cor- rigées rendent ces sensibilités inutilisables pour certaines applications. Par conséquent, nous ajoutons un terme de correction aux équations de sensibilité. Nous faisons cela pour une hiérarchie de modèles de complexité croissante : de l’équation de Burgers non visqueuse au système d’Euler quasi-1D. Nous montrons l’influence de ce terme de correction sur un problème d’optimisation et sur un de quantification d’incertitude. / Sensitivity analysis (SA) concerns the quantification of changes in Partial Differential Equations (PDEs) solution due to perturbations in the model input. Stan- dard SA techniques for PDEs, such as the continuous sensitivity equation method, rely on the differentiation of the state variable. However, if the governing equations are hyperbolic PDEs, the state can exhibit discontinuities yielding Dirac delta functions in the sensitivity. We aim at modifying the sensitivity equations to obtain a solution without delta functions. This is motivated by several reasons: firstly, a Dirac delta function cannot be seized numerically, leading to an incorrect solution for the sensi- tivity in the neighbourhood of the state discontinuity; secondly, the spikes appearing in the numerical solution of the original sensitivity equations make such sensitivities unusable for some applications. Therefore, we add a correction term to the sensitivity equations. We do this for a hierarchy of models of increasing complexity: starting from the inviscid Burgers’ equation, to the quasi 1D Euler system. We show the influence of such correction term on an optimization algorithm and on an uncertainty quantification problem.
Identifer | oai:union.ndltd.org:theses.fr/2018SACLV034 |
Date | 11 July 2018 |
Creators | Fiorini, Camilla |
Contributors | Paris Saclay, Chalons, Christophe, Duvigneau, Régis |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds