• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse de sensibilité pour systèmes hyperboliques non linéaires / Sensitivity analysis for nonlinear hyperbolic equations of conservation laws

Fiorini, Camilla 11 July 2018 (has links)
L’analyse de sensibilité (AS) concerne la quantification des changements dans la solution d’un système d’équations aux dérivées partielles (EDP) dus aux varia- tions des paramètres d’entrée du modèle. Les techniques standard d’AS pour les EDP, comme la méthode d’équation de sensibilité continue, requirent de dériver la variable d’état. Cependant, dans le cas d’équations hyperboliques l’état peut présenter des dis- continuités, qui donc génèrent des Dirac dans la sensibilité. Le but de ce travail est de modifier les équations de sensibilité pour obtenir un syst‘eme valable même dans le cas discontinu et obtenir des sensibilités qui ne présentent pas de Dirac. Ceci est motivé par plusieurs raisons : d’abord, un Dirac ne peut pas être saisi numériquement, ce qui pourvoit une solution incorrecte de la sensibilité au voisinage de la discontinuité ; deuxièmement, les pics dans la solution numérique des équations de sensibilité non cor- rigées rendent ces sensibilités inutilisables pour certaines applications. Par conséquent, nous ajoutons un terme de correction aux équations de sensibilité. Nous faisons cela pour une hiérarchie de modèles de complexité croissante : de l’équation de Burgers non visqueuse au système d’Euler quasi-1D. Nous montrons l’influence de ce terme de correction sur un problème d’optimisation et sur un de quantification d’incertitude. / Sensitivity analysis (SA) concerns the quantification of changes in Partial Differential Equations (PDEs) solution due to perturbations in the model input. Stan- dard SA techniques for PDEs, such as the continuous sensitivity equation method, rely on the differentiation of the state variable. However, if the governing equations are hyperbolic PDEs, the state can exhibit discontinuities yielding Dirac delta functions in the sensitivity. We aim at modifying the sensitivity equations to obtain a solution without delta functions. This is motivated by several reasons: firstly, a Dirac delta function cannot be seized numerically, leading to an incorrect solution for the sensi- tivity in the neighbourhood of the state discontinuity; secondly, the spikes appearing in the numerical solution of the original sensitivity equations make such sensitivities unusable for some applications. Therefore, we add a correction term to the sensitivity equations. We do this for a hierarchy of models of increasing complexity: starting from the inviscid Burgers’ equation, to the quasi 1D Euler system. We show the influence of such correction term on an optimization algorithm and on an uncertainty quantification problem.
2

Contrôle frontière par modèle interne de systèmes hyperboliques :<br />application à la régulation de canaux d'irrigation

Dos Santos Martins, Valérie 14 November 2004 (has links) (PDF)
Ce travail traite du contrôle des systèmes décrits par des Equations aux Dérivés Partielles. La structure de Commande par Modèle Interne est étendue aux systèmes hyperboliques de dimension infinie, à contrôle frontière. Les EDP considérées sont celles de Saint-Venant, non linéaires, décrivant les écoulements à surface libre. <br />Le modèle utilisé est une linéarisation autour d'un écoulement permanent dont les coefficients dépendent de la variable d'espace. Les pentes et frottements sont non nuls, prenant en compte les phénomènes variables le long du canal. <br />L'analyse et la synthèse du contrôle sont réalisées en considérant le système en boucle fermée comme une perturbation de celui en boucle ouverte. Les perturbations portent sur les opérateurs, les semigroupes et le spectre dans un espace de Hilbert. L'opérateur hyperbolique Ae(x)dx+ Be(x) est caractérisé explicitement sans transformation préalable, en dimension une d'espace, où Ae(x) et Be(x) sont bornés. <br />Pour la synthèse de commande, une structure de contrôle frontière par modèle interne est utilisée, après avoir été ramené sous forme Kalmanienne abstraite. L'analyse de la stabilité en boucle fermée, par la théorie de la perturbation en dimension infinie, permet de donner des conditions suffisantes sur les paramètres de synthèse d'une loi de commande du type intégral et/ou proportionnel. <br />Les résultats en simulation et expérimentaux sur le canal de Valence montrent la faisabilité de l'approche. Elle est testée dans le cas monobief et multibiefs.
3

Étude d'équations aux dérivées partielles hyperboliques en mécanique des fluides

Seguin, Nicolas 08 December 2011 (has links) (PDF)
Ce mémoire est dédié à l'étude d'équations aux dérivées partielles de type hyperbolique intervenant en mécanique des fluides. Suivant les problèmes, on entend par étude la modélisation, l'analyse ou l'approximation numérique des modèles considérés. Le premier chapitre de ce mémoire traite des systèmes hyperboliques et de leur approximation par des schémas volumes finis. On présente notamment des schémas numériques simples pour approcher les solutions de systèmes de lois de conservation généraux. On étudie de plus la notion de hiérarchie de modèles, c'est-à-dire de connexion entre différents modèles à travers des procédés asymptotiques (relaxation, asymptotique parabolique et contrainte sur l'espace des états admissible), d'un point de vue théorique et/ou numérique, suivant le type de hiérarchie considéré. Le deuxième chapitre est consacré à la modélisation, l'analyse et l'approximation numérique d'écoulements diphasiques. Les modèles diphasiques envisagés ici sont les modèles compressibles avec deux vitesses et deux pressions, les modèles de dérive, les modèles pour un fluide avec transition de phase, ainsi que les modèles d'écoulements d'eau à surface libre. Pour la plupart des cas, on propose une analyse et une approximation numérique des modèles et quand c'est possible, on donne les liens les unissant. Le dernier chapitre compile différents travaux sur des modèles de fluides dans lesquels apparaissent des interfaces ayant une origine extérieure à l'écoulement lui-même. Les premiers travaux sont dédiés aux lois de conservation incluant une discontinuité, soit due à un changement brusque du milieu environnant, soit due à la présence d'une contrainte locale sur la solution. On présente ensuite l'analyse et l'approximation numérique d'un modèle de particule ponctuelle évoluant dans un fluide unidimensionnel. Enfin, on aborde le couplage de systèmes hyperboliques issus de la connexion interfaciale de codes de calcul, avec pour application l'adaptation dynamique de modèle, qui consiste à remplacer localement et dynamiquement un modèle par un modèle simplifié pour optimiser d'un code.
4

Étude sur le contrôle / régulation automatique des systèmes non-linéaires hyperboliques / Study on the automatic control/regulation for nonlinear hyperbollic systems

Trinh, Ngoc Tu 06 October 2017 (has links)
Dans cette étude on s'intéresse à la dynamique d'une classe de systèmes non-linéaires décrits par des équations aux dérivées partielles (EDP) du type hyperbolique. L'objectif de l'étude est de construire des lois de contrôle par feedback dynamique de la sortie afin de stabiliser le système autour d'un point d'équilibre d'une part, et, d'autre part, de réguler la sortie vers le point de consigne. Nous considérons la classe des systèmes gouvernés par des EDP quasi-linéaires du type hyperbolique à deux variables indépendantes (une variable temporelle et une variable spatiale). Pour le bien-posé du système dynamique non seulement l'état initial mais aussi certaines conditions frontières doivent être prescrites en cohérence avec les EDP. Nous supposons que l'observation et le contrôle sont ponctuels. Autrement dit l'action du contrôle intervient dans le système via les conditions frontières et l'observation est effectuée aux points de la frontière. Notre étude est motivée par l'observation que de nombreux processus physiques sont modélisés par ce type d'équations EDP. Nous citons, par exemple, des processus tels que flux trafique en transport, flux de gaz dans un réseau de pipeline, échangeurs thermiques en génie des procédés, équations de télégraphe dans des lignes de transmission, canaux d'irrigation en génie civil etc. Nous commençons l'étude par une EDP non-linéaire scalaire. Dans ce cas-là nous proposons un correcteur intégral stabilisant qui assure la régulation de la sortie avec l'erreur statique nulle. Nous prouvons la stabilisation locale du système non-linéaire par le correcteur intégral en construisant une fonctionnelle de Lyapunov appropriée. La conception des correcteurs proportionnels et intégraux (PI) que nous proposons est étendue dans un cadre de systèmes de deux EDP. Nous prouvons la stabilisation du système en boucle fermée à l'aide d'une nouvelle fonctionnelle de Lyapunov. La synthèse des correcteurs PI stabilisants se poursuit dans un cadre de réseaux formés d'un nombre fini de systèmes à deux EDP : réseau étoilé et réseau série en cascade. Les contrôles et les observations se trouvent localisés aux différents nœuds de connexion. Pour ces configurations nous présentons un ensemble de correcteurs PI stabilisants qui assurent la régulation vers le point de consigne. Les correcteurs PI que nous concevons sont validés par des simulations numériques à partir des modèles non-linéaires EDP. La contribution de la thèse, par rapport à la littérature existante, consiste en l'élaboration de nouvelles fonctionnelles de Lyapunov pour une classe de systèmes stabilisés par correcteur PI. En effet une grande quantité de résultats ont été obtenus sur la stabilisation des systèmes hyperboliques par feedback statique de la sortie. Toutefois il existe encore peu de résultats sur la stabilisation de ces systèmes par feedback dynamique de la sortie. L'étude de la thèse est consacrée sur l'élaboration des fonctionnelles de Lyapunov permettant d'obtenir des correcteurs PI stabilisants. L'approche de Lyapunov direct que nous avons proposée a pour l'avantage de permettre d'étudier la robustesse des lois de feedback de la sortie PI vis-à-vis de la non-linéarité. Une autre contribution de la thèse consiste en la construction des programmes de Malab permettant d'effectuer des simulations numériques pour la validation des correcteurs conçus. Pour la résolution numérique des EDP hyperboliques nous avons discrétisé nos systèmes par le schéma numérique de Preissmann. Nous avons chaque fois un système d'équations algébriques non-linéaires à résoudre de façon récurrente. L'apport des simulations numériques nous permet de mieux comprendre la méthodologie applicative de la théorie du contrôle en dimension infinie / In this study we are interested in the dynamics of a class of nonlinear systems described by partial differential equations (PDE) of the hyperbolic type. The aim of the study is to construct control laws by dynamic feedback of the output in order to stabilize the system around an equilibrium point on the one hand and to regulate the output to the set-point. We consider the class of systems governed by hyperbolic PDEs with two independent variables (one time variable and one spatial variable). For the well-posed dynamic system not only the initial state but also certain boundary conditions must be prescribed in coherence with the PDEs. We assume that observation and control are punctual. In other words, the action of the control intervenes in the system via the boundary conditions and the observation is carried out at the points of the border. Our study is motivated by the observation that many physical processes are modeled by this type of PDE equations. Examples include processes such as traffic flow in transportation, gas flows in a pipeline network, heat exchangers in process engineering, telegraph equations in transmission lines, civil engineering irrigation channels, to cite but a few.We begin the study with a scalar nonlinear PDE. In this case we propose a stabilizing integral controller which ensures the regulation of the output with zero static error. We prove the local stabilization of the nonlinear system by the integral controller by constructing an appropriate Lyapunov functional. The design of the proportional and integral (PI) controllers that we propose is extended in a framework of two PDE systems. We prove the stabilization of the closed-loop system with a new Lyapunov functional. The synthesis of stabilizing PI controllers is carried out in a framework of networks formed by a finite number of two PDE systems: star network and serial network in cascade. Controls and observations are located at the different connection nodes. For these configurations we present a set of stabilizing PI controllers that regulate the output to the set-point. The PI controllers that we design are validated by numerical simulations from the nonlinear PDE models. The contribution of the thesis compared to the existing literature consists in the development of new Lyapunov functionals for the class of systems looped by a PI controller. Indeed, a large number of results have been obtained from the stabilization of hyperbolic systems by static feedback of the output. However, there are still few results with the stabilization of these systems by the output dynamic feedback. The study of the thesis is devoted to the development of the Lyapunov functional to obtain stabilizing PI controllers. The direct Lyapunov approach that we have proposed has the advantage of allowing to study the robustness of the output dynamic feedback laws in the form of PI controllers with respect to the nonlinearity. Another contribution of the thesis consists of the Malab program construction allowing to carry out numerical simulations for the validation of the conceived controllers. For the numerical resolution of hyperbolic PDEs, we have discretized our systems using the Preissmann numerical scheme. Each time moment we have a system of non-linear algebraic equations to be solved in a recurring way. The contribution of numerical simulations allows us to better understand the application methodology of the infinite dimension control theory
5

Propriétés asymptotiques des solutions à données petites du système de Vlasov-Maxwell / Asymptotic properties of the small data solutions of the Vlasov-Maxwell system

Bigorgne, Léo 25 June 2019 (has links)
L'objectif de cette thèse est de décrire le comportement asymptotique des solutions à données petites du système de Vlasov-Maxwell. En particulier, on s'attachera à étudier tant le champ électromagnétique que le champ de Vlasov par des méthodes de champs de vecteurs, nous permettant ainsi d'éviter toute contrainte de support sur les données initiales. La structure isotrope du système de Vlasov-Maxwell est d'une importance capitale pour compenser le phénomène de résonance causé par les particules approchant la vitesse de propagation du champ électromagnétique. De ce fait, plusieurs parties de ce manuscrit sont dédiées à sa description. Ajoutons également que les méthodes de champs de vecteurs sont connues pour être robustes et s'adapter relativement bien à d'autres situations telles que l'étude des solutions de l'équation des ondes sur un espace-temps courbé. Cette souplesse nous a notamment permis, contrairement aux travaux précédents sur ce sujet, de considérer des plasmas avec des particules sans masse.Notre étude débute par le cas des grandes dimensions d ≥ 4 où les effets dispersifs sont plus importants et permettent ainsi d'obtenir de meilleurs taux de décroissance sur les solutions du système et leurs dérivées. Une nouvelle inégalité de décroissance pour les solutions d'une équation de transport relativiste constitue d'ailleurs un élément central de la démonstration. Afin d'établir un résultat analogue dans le cas où les particules sont sans masse, nous avons dû imposer que le champ de Vlasov s'annule initialement pour les petites vitesses puis nous avons ensuite montré que cette hypothèse était nécessaire. Dans un second temps, nous nous intéressons au cas tridimensionnel avec des particules sans masse, où une étude plus poussée de la structure des équations sera nécessaire afin d'obtenir les taux de décroissance optimaux pour les composantes isotropes du champ électromagnétique, les moyennes en vitesse de la fonction de distribution et leurs dérivées. Nous nous concentrons ensuite sur l'étude du comportement asymptotique des solutions à données petites du système de Vlasov-Maxwell massif en dimension 3. Des difficultés spécifiques nous forcent à modifier les champs de vecteurs utilisés précédemment pour l'équation de transport dans le but de compenser les pires termes d'erreurs des équations commutées. Enfin, on considère le même problème en se restreignant à l'étude des solutions à l'extérieur d'un cône de lumière. Les fortes propriétés de décroissance vérifiées par la moyenne en vitesse de la densité de particules dans cette région nous permettent d'affaiblir les hypothèses sur les données initiales et d'avoir une démonstration considérablement plus simple. / The purpose of this thesis is to study the asymptotic properties of the small data solutions of the Vlasov-Maxwell system using vector field methods for both the electromagnetic field and the particle density. No compact support asumption is required on the initial data. Instead, we make crucial use of the null structure of the equations in order to deal with a resonant phenomenon caused by the particles approaching the speed of propagation of the Maxwell equations. Due to the robustness of vector field methods and contrary to previous works on this topic, we also study plasmas with massless particles.We start by investigating the high dimensional cases d ≥ 4 where dispersive effects allow us to derive strong decay rate on the solutions of the system and their derivatives. For that purpose, we proved a new decay estimate for solutions to massive relativistic transport equations. In order to obtain an analogous result for massless particles, we required the velocity support of the distribution function to be initially bounded away from $0$ and we then proved that this assumption is actually necessary. The second part of this thesis is devoted to the three dimensional massless case, where a stronger understanding of the null structure of the Vlasov-Maxwell system is essential in order to derive the optimal decay rate of the null components of the electromagnetic field, the velocity average of the particle density and their derivatives. We then focus on the asymptotic behavior of the small data solutions of the massive Vlasov-Maxwell system in 3d. Specific problems force us to modify the vector fields used previously to study the Vlasov field in order to compensate the worst error terms in the commuted transport equations. Finally, still for the massive system in 3d, we restrict our study of the solutions to the exterior of a light cone. The strong decay properties satisfied by the velocity average of the particle density in such a region permit us to relax the hypothesis on the initial data and lead to a much simpler proof.

Page generated in 0.0472 seconds