Return to search

Renormalização de aplicações unimodais com ordem crítica próxima a 2N / Renormalization of unimodal maps with critical order to 2N

Nós estudamos a dinâmica do operador de renormalização atuando no espaço de pares (?, t), onde ? é um difeomorfismo e t ? [0, 1], interpretados como aplicações unimodais ? o qt, onde qt(x) = -2t|x|? + 2t - 1. Estabelecemos cotas complexas a priori para pares suficientemente renormalizáveis com combinatória limitada e então a utilizamos para mostrar que quando o expoente crítico ? está próximo de um número par, o operador de renormalização tem um único ponto fixo, o qual é hiperbólico e possui uma variedade estável de codimensão um que contém todos os pares infinitamente renormalizáveis / We study the dynamics of the renormalization operator acting on the space of pairs (?, t), where ? is a diffeomorphism and t ? [0, 1], interpretated as unimodal maps ? o qt, where qt(x) = -2t|x|? + 2t - 1. We prove the so called complex bounds for sufficiently renormalizable pairs with bounded combinatorics. This allows us to show that if the critical exponent ? is close to an even number then the renormalization operator has a unique fixed point. Furthermore this fixed point is hyperbolic and its codimension one stable manifold contains all infinitely renormalizable pairs

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-22012008-100700
Date12 November 2007
CreatorsJudith Hayde Cruz Torres
ContributorsDaniel Smania Brandão, Welington Celso de Melo, Ali Messaoudi, Edson Vargas, Carlos Teobaldo Gutierrez Vidalon
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds