This study represents the first shift in multivoltine life history of Cheumatopsyche species from a wastewater treatment plant (WWTP) in North America. Populations of C. lasia were examined upstream and downstream of the Denton’s Pecan Creek WWTP August 2009 through November 2010. C. lasia is multivoltine in Pecan Creek with three cohorts observed upstream of the WWTP and four possible cohorts downstream. A fourth generation was possible downstream as thermal inputs from WWTP effluent resulted in elevated water temperatures that allowed larval development to progress through the winter producing a cohort ready to emerge in spring. Production of C. lasia was 5 times greater downstream of the WWTP with secondary production estimates of 1.3 g m-2 yr-1 and 4.88- 6.51 g m-2 yr-1, respectively. Differences in abundance were due to increased habitat availability downstream of the WWTP in addition to continuous stream flow from inputs of wastewater effluent. Results also suggest that C. lasia is important for energy transfer in semiarid urban prairie streams and may serve as a potential conduit for the transfer of energy along with emergent contaminants to terrestrial ecosystems. These finding highlight the need for more quantitative accounts of population dynamics (voltinism, development rates, secondary production, and P/B) of aquatic insect species to fully understand the ecology and energy dynamics of urban systems.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc103372 |
Date | 12 1900 |
Creators | Paul, Jenny Sueanna |
Contributors | Kennedy, James H., Wolverton, Steven J., O'Donovan, Gerard A. |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Paul, Jenny Sueanna, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved. |
Page generated in 0.002 seconds