Return to search

Méthodes et outils pour la spécification et la preuve de propriétés difficiles de programmes séquentiels / Methods and tools for specification and proof of difficult properties of sequential programs

Cette thèse se positionne dans le domaine de la vérification déductive de programmes, qui consiste à transformer une propriété à vérifier sur un programme en un énoncé logique, pour ensuite démontrer cet énoncé. La vérification effective d'un programme peut poser de nombreuses difficultés pratiques. En fait, les concepts mis en jeu derrière le programme peuvent suffire à faire obstacle à la vérification. En effet, certains programmes peuvent être assez courts et n'utiliser que des constructions simples, et pourtant s'avérer très difficiles à vérifier. Cela nous amène à la question suivante: dans le contexte d'un environnement de vérification déductive de programmes basé sur les démonstrateurs automatiques, quelles méthodes appliquer pour réduire l'effort nécessaire à la fois pour spécifier des comportements attendus complexes, ainsi que pour démontrer qu'un programme respecte ces comportements attendus? Pour mener notre étude, nous nous sommes placés dans le cadre de l'environnement de vérification déductive de programmes Why3. La vérification de programmes en Why3 est basée sur la génération de conditions de vérification, et l'usage de démonstrateurs externes pour les prouver, que ces démonstrateurs soient automatiques ou interactifs. Nous avons développé plusieurs méthodes, certaines générales et d'autres spécifiques à des classes de programmes, pour réduire l'effort manuel. Nos contributions sont les suivantes. Tout d'abord, nous ajoutons des fonctionnalités à Why3 pour assister le processus de vérification, notamment un mécanisme léger de preuve déclarative basé sur la notion d'indicateurs de coupures. Ensuite, nous présentons une méthode de vérification d'absence de débordement arithmétique pour une classe d'utilisation des entiers difficile à traiter par les méthodes standards. Enfin, nous nous intéressons au développement d'une bibliothèque générique pour la spécification et la preuve de programmes générateurs de code. / This thesis is set in the domain of deductive verification of programs, which consists of transforming a property to be verified about a program into a logical statement, and then proving this statement. Effective verification of a program can pose many practical difficulties. In fact, the concepts behind the program may be sufficient to impede verification. Indeed, some programs can be quite short and use only simple constructions, and yet prove very difficult to verify. This leads us to the following question: in the context of a deductive program verification environment based on automatic provers, what methods can be applied to reduce the effort required both to specify complex behaviors, as well as to prove that a program respects these expected behaviors? To carry out our study, we placed ourselves in the context of the deductive verification environment of programs Why3. The verification of programs in Why3 is based on the generation of verification conditions, and the use of external provers to prove them, whether these provers are automatic or interactive. We have developed several methods, some general and others specific to some program classes, to reduce manual effort. Our contributions are as follows. First, we add features to Why3 to assist the verification process, including a lightweight declarative proof mechanism based on the notion of cut indicators. Then we present a method for checking the absence of arithmetic overflow, for use cases which are difficult to process by standard methods. Finally, we are interested in the development of a generic library for the specification and proof of code generating programs.

Identiferoai:union.ndltd.org:theses.fr/2018SACLS071
Date30 March 2018
CreatorsClochard, Martin
ContributorsUniversité Paris-Saclay (ComUE), Marché, Claude
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds