This thesis presents Monza, a system for accelerating the simulation of modelsof physical systems described by ordinary differential equations, using a generalpurpose computer with a PCIe FPGA expansion card. The system allows bothautomatic generation of an FPGA implementation from a model described in theModelica programming language, and simulation of said system.Monza accomplishes this by using a customizable hardware architecture forthe FPGA, consisting of a variable number of simple processing elements. A cus-tom compiler, also developed in this thesis, tailors and programs the architectureto run a specific model of a physical system.Testing was done on two test models, a water tank system and a Weibel-lung,with up to several thousand state variables. The resulting system is several timesfaster for smaller models and somewhat slower for larger models compared to aCPU. The conclusion is that the developed hardware architecture and softwaretoolchain is a feasible way of accelerating model execution, but more work isneeded to ensure faster execution at all times.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-145692 |
Date | January 2018 |
Creators | Lundkvist, Herman, Yngve, Alexander |
Publisher | Linköpings universitet, Datorteknik, Linköpings universitet, Datorteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds