DieMenschheit ist vielfältigen chemischenWirkstoffen ausgesetzt – zum Beispiel durch Kosmetika und Pharmazeutika sowie durch viele andere chemische Quellen. Es wird angenommen, dass diese stetige Exposition mit Chemikalien gesundheitliche Beeinträchtigungen bei Menschen hervorruft. Zudem haben Regulierungsbehörden aus Europa und den USA festgestellt, dass es ein Risiko gibt, welches mit der kombinierten Exposition durch mehrere Chemikalien im Zusammenhang steht. Mögliche Kombinationen von Tausenden Wirkstoffen zu testen, ist sehr zeitaufwendig und nicht praktikabel. Das Hauptanliegen dieser Arbeit ist es, die Probleme von Off-target-Effekten chemischer Strukturen zu benennen – mit den Mitteln der Chemieinformatik, der strukturellen Bioinformatik sowie unter Berücksichtigung von computerbasierten, systembiologischen Ansätzen. Diese Dissertation ist in vier Hauptprojekte eingeteilt. ImProjekt I (Kapitel 3)wurde ein neuartiger Ensemble-Ansatz basierend auf der strukturellen Ähnlichkeit von chemischenWirkstoffen und Bestimmungen von toxischen Fragmenten implementiert,um die orale Toxizität bei Nagetieren vorherzusagen. Im Projekt II (Kapitel 4) wurden – auf der Grundlage von Daten des Tox21 Wettbewerbs – unterschiedliche Machine-Learning Modelle entwickelt und verglichen, um die Komponenten vorherzusagen, die in den toxikologischen Stoffwechselwegen mit Zielmolekülen interagieren von target-spezifischenWirkstoffen vorherzusagen. In Projekt III (Kapitel 5) wird ein neuartiger Ansatz beschrieben, welcher das dreigliedrige Konzept aus computerbasierter Systembiologie, Chemieinformatik und der strukturellen-Bioinformatik nutzt, um Medikamente zu bestimmen, welche das metabolische Syndrom hervorrufen. In Projekt IV (Kapitel 6) wurde in silico ein Screening Protokoll entwickelt, welches die strukturelle Ähnlichkeit, die pharmakophorischen Eigenschaften und die Überprüfung von computerbasierten Docking Studien berücksichtigt. / Exposure to various chemicals agents through cosmetics, medications, preserved food, environments and many other sources have resulted in serious health issues in humans. Additionally, regulatory authorities from Europe and United States of America have recognized the risk associated with combined exposure to multiple chemicals. Testing all possible combinations of these thousands of compounds is impractical and time consuming. The main aim of the thesis is to address the problem of off-targets effects of chemical structures by applying and developing cheminformatics, structural bioinformatics and computational systems biology approaches. This dissertation is divided into four main projects representing four different computational methods to aid different level of toxicological investigations. In project I (chapter 3) a novel ensemble approach based on the structural similarity of the chemical compounds and identifications of toxic fragments was implemented to predict rodent oral toxicity. In project II (chapter 4) different machine learning models were developed and compared using Tox 21 challenge 2014 data, to predict the outcomes of the compounds that have the potential to interact with the targets active in toxicological pathways. In project III (chapter 5) a novel approach integrating the trio concept of ’computational system biology, cheminformatics and structural bioinformatics’ to predict drugs induced metabolic syndrome have been described. In project IV (chapter 6) a in silico screening protocol was established taking into the structurally similarity, pharmacophoric features and validation using computational docking studies. This approach led to the identification of novel binding site for acyclovir in the peptide binding groove of the human leukocyte antigen (HLA) specific allele.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/18441 |
Date | 17 May 2017 |
Creators | Banerjee, Priyanka |
Contributors | Klipp, Edda, Holzhütter, Hermann-Georg, Preissner, Robert |
Publisher | Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung, http://creativecommons.org/licenses/by-nc-nd/3.0/de/ |
Page generated in 0.0134 seconds