在這篇論文裡,我們探討 $\mathcal{A}$ 類半純函數的值分佈基本理論。我們證明了每一個 $\mathcal{A}$ 類半純函數最多有兩個重值,而這個結果是最佳的情形。進而,我們證明若一個 $\mathcal{A}$ 類半純函數 $f$ 與其導數 $f^{(k)}$ 共非零的複數值,則 $f\equiv f^{(k)}$。 / In this thesis, we study the basic theory of value distribution of meromorphic function of class $\mathcal{A}$. We prove that every meromorphic function of class $\mathcal{A}$ has at most two multiple values and the result is sharp. Also, we prove that if a meromorphic function $f$ of class $\mathcal{A}$ and its derivative $f^{(k)}$ share a non-zero complex value, then $f\equiv f^{(k)}$.
Identifer | oai:union.ndltd.org:CHENGCHI/G0987510031 |
Creators | 陳盈穎, Chen, Ying Ying |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 英文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0029 seconds