Dans cette thèse on aborde le problème de la localisation en milieux urbains. Inférer un positionnement précis en ville est important dans nombre d’applications comme la réalité augmentée ou la robotique mobile. Or les systèmes basés sur des capteurs inertiels (IMU) sont sujets à des dérives importantes et les données GPS peuvent souffrir d’un effet de vallée qui limite leur précision. Une solution naturelle est de s’appuyer le calcul de pose de caméra en vision par ordinateur. On remarque que les bâtiments sont les repères visuels principaux de l’humain mais aussi des objets d’intérêt pour les applications de réalité augmentée. On cherche donc à partir d’une seule image à calculer la pose de la caméra par rapport à une base de données de bâtiments références connus. On décompose le problème en deux parties : trouver les références visibles dans l’image courante (reconnaissance de lieux) et calculer la pose de la caméra par rapport à eux. Les approches classiques de ces deux sous-problèmes sont mises en difficultés dans les environnements urbains à cause des forts effets perspectives, des répétitions fréquentes et de la similarité visuelle entre façades. Si des approches spécifiques à ces environnements ont été développés qui exploitent la grande régularité structurelle de tels milieux, elles souffrent encore d’un certain nombre de limitations autant pour la détection et la reconnaissance de façades que pour le calcul de pose par recalage de modèle. La méthode originale développée dans cette thèse s’inscrit dans ces approches spécifiques et vise à dépasser ces limitations en terme d’efficacité et de robustesse aux occultations, aux changements de points de vue et d’illumination. Pour cela, l’idée principale est de profiter des progrès récents de l’apprentissage profond par réseaux de neurones convolutionnels pour extraire de l’information de haut-niveau sur laquelle on peut baser des modèles géométriques. Notre approche est donc mixte Bottom-Up/Top-Down et se décompose en trois étapes clés. Nous proposons tout d’abord une méthode d’estimation de la rotation de la pose de caméra. Les 3 points de fuite principaux des images en milieux urbains, dits points de fuite de Manhattan sont détectés grâce à un réseau de neurones convolutionnels (CNN) qui fait à la fois une estimation de ces points de fuite mais aussi une segmentation de l’image relativement à eux. Une second étape de raffinement utilise ces informations et les segments de l’image dans une formulation bayésienne pour estimer efficacement et plus précisément ces points. L’estimation de la rotation de la caméra permet de rectifier les images et ainsi s’affranchir des effets de perspectives pour la recherche de la translation. Dans une seconde contribution, nous visons ainsi à détecter les façades dans ces images rectifiées et à les reconnaître parmi une base de bâtiments connus afin d’estimer une translation grossière. Dans un soucis d’efficacité, on a proposé une série d’indices basés sur des caractéristiques spécifiques aux façades (répétitions, symétrie, sémantique) qui permettent de sélectionner rapidement des candidats façades potentiels. Ensuite ceux-ci sont classifiés en façade ou non selon un nouveau descripteur CNN contextuel. Enfin la mise en correspondance des façades détectées avec les références est opérée par un recherche au plus proche voisin relativement à une métrique apprise sur ces descripteurs [...] / This thesis addresses the problem of localization in urban areas. Inferring accurate positioning in the city is important in many applications such as augmented reality or mobile robotics. However, systems based on inertial sensors (IMUs) are subject to significant drifts and GPS data can suffer from a valley effect that limits their accuracy. A natural solution is to rely on the camera pose estimation in computer vision. We notice that buildings are the main visual landmarks of human beings but also objects of interest for augmented reality applications. We therefore aim to compute the camera pose relatively to a database of known reference buildings from a single image. The problem is twofold : find the visible references in the current image (place recognition) and compute the camera pose relatively to them. Conventional approaches to these two sub-problems are challenged in urban environments due to strong perspective effects, frequent repetitions and visual similarity between facades. While specific approaches to these environments have been developed that exploit the high structural regularity of such environments, they still suffer from a number of limitations in terms of detection and recognition of facades as well as pose computation through model registration. The original method developed in this thesis is part of these specific approaches and aims to overcome these limitations in terms of effectiveness and robustness to clutter and changes of viewpoints and illumination. For do so, the main idea is to take advantage of recent advances in deep learning by convolutional neural networks to extract high-level information on which geometric models can be based. Our approach is thus mixed Bottom- Up/Top-Down and is divided into three key stages. We first propose a method to estimate the rotation of the camera pose. The 3 main vanishing points of the image of urban environnement, known as Manhattan vanishing points, are detected by a convolutional neural network (CNN) that estimates both these vanishing points and the image segmentation relative to them. A second refinement step uses this information and image segmentation in a Bayesian model to estimate these points effectively and more accurately. By estimating the camera’s rotation, the images can be rectified and thus free from perspective effects to find the translation. In a second contribution, we aim to detect the facades in these rectified images to recognize them among a database of known buildings and estimate a rough translation. For the sake of efficiency, a series of cues based on facade specific characteristics (repetitions, symmetry, semantics) have been proposed to enable the fast selection of facade proposals. Then they are classified as facade or non-facade according to a new contextual CNN descriptor. Finally, the matching of the detected facades to the references is done by a nearest neighbor search using a metric learned on these descriptors. Eventually we propose a method to refine the estimation of the translation relying on the semantic segmentation inferred by a CNN for its robustness to changes of illumination ans small deformations. If we can already estimate a rough translation from these detected facades, we choose to refine this result by relying on the se- mantic segmentation of the image inferred from a CNN for its robustness to changes of illuminations and small deformations. Since the facade is identified in the previous step, we adopt a model-based approach by registration. Since the problems of registration and segmentation are linked, a Bayesian model is proposed which enables both problems to be jointly solved. This joint processing improves the results of registration and segmentation while remaining efficient in terms of computation time. These three parts have been validated on consistent community data sets. The results show that our approach is fast and more robust to changes in shooting conditions than previous methods
Identifer | oai:union.ndltd.org:theses.fr/2018LORR0028 |
Date | 06 April 2018 |
Creators | Fond, Antoine |
Contributors | Université de Lorraine, Berger, Marie-Odile, Simon, Gilles |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0044 seconds