Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-03-02T18:22:17Z
No. of bitstreams: 1
lucianagomes.pdf: 2235724 bytes, checksum: a319cb5c94b9c3b92bbfe46df00c557a (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-03-06T20:01:01Z (GMT) No. of bitstreams: 1
lucianagomes.pdf: 2235724 bytes, checksum: a319cb5c94b9c3b92bbfe46df00c557a (MD5) / Made available in DSpace on 2017-03-06T20:01:01Z (GMT). No. of bitstreams: 1
lucianagomes.pdf: 2235724 bytes, checksum: a319cb5c94b9c3b92bbfe46df00c557a (MD5)
Previous issue date: 2012-08-15 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Em muitos problemas é necessária a descrição qualitativa dos dados (por exemplo,
usando variáveis tais como sexo ou idade de um paciente). Para uso em redes neurais
artificiais, contudo, estas variáveis têm que ser recodificadas quantitativamente. Neste
trabalho, foram feitas simulações com seis técnicas bastante conhecidas de recodificação de
variáveis qualitativas: Dummy 1-de-c, Dummy 1-de-(c-1), Termômetro, Numérica, Gray e
Binária. O desempenho das seis técnicas foi comparado com o desempenho obtido utilizandose
os fatores de Análise de Correspondência (AC) ao invés das variáveis qualitativas
originais. O uso destes fatores de AC como forma de codificar variáveis de entrada de uma
rede neural ainda não foi relatado na literatura. As simulações forem feitas com três bases de
dados. Duas delas envolvem problemas de classificação de padrões em duas classes (o
desempenho foi medido por meio da proporção de classificações corretas); a terceira base
envolve um problema de aproximação de funções (o desempenho foi medido por meio dos
erros MAPE e MSE). Nas bases de dados Seguros e Consumo, os resultados obtidos para AC
são equivalentes aos das demais técnicas aplicadas e na base Córneas, não foi satisfatório, não
demonstrando, assim, vantagens sobre as demais técnicas. / In many problems, a qualitative description of the data is needed (using for example
variables such as age or sex of a patient). For use on artificial neural networks, however, these
variables must be recoded quantitatively. In this study, simulations were made with six wellknown
techniques for recoding qualitative variables: Dummy 1-of-c, Dummy 1-of-(c-1),
Thermometer, Numerical, Gray, and Binary. The performance of these techniques was
compared to the performance obtained using the factors of Correspondence Analysis (CA)
instead of the original qualitative variables. The use of these factors as inputs to the neural
network has not been reported in the literature. Simulations were made with three dataset.
Two of them involve classification problems, with two classes (performance was measured by
the percentage of correct classifications); the third dataset involves a problem of function
approximation (performance was measured by MAPE and MSE). For two of the datasets, the
results for CA are equivalent to those of the other techniques applied; for the third, the
performance was not satisfactory, do not showing any advantages over other techniques.
Identifer | oai:union.ndltd.org:IBICT/oai:hermes.cpd.ufjf.br:ufjf/3522 |
Date | 15 August 2012 |
Creators | Gomes, Luciana |
Contributors | Hippert, Henrique Steinherz, Fonseca Neto, Raul, Santos, Marcelo Costa Pinto e |
Publisher | Universidade Federal de Juiz de Fora (UFJF), Programa de Pós-graduação em Modelagem Computacional, UFJF, Brasil, ICE – Instituto de Ciências Exatas |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFJF, instname:Universidade Federal de Juiz de Fora, instacron:UFJF |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds