Le but initial de cette thèse était d'étudier les espaces de superlacets, version géométrique des espaces de supercordes en Physique. Le point de départ était alors d'étendre les résultats de classifications de l'article de Oleg Mokhov : Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems au cadre de la supergéométrie. Dans cet article l'auteur établit une classification des formes symplectiques locales homogènes d'ordre 0, 1 et 2 sur l'espace des lacets LM = C1(S1;M) à partir d'objets géométriques sur la variété différentiable M. Dans cette thèse, on remplace la variété M par une supervariété Mpjq et le cercle S1 par un supercercle S1jn et l'on étudie l'espace des morphismes de supervariétésMor(S1jn;Mpjq). Dans les deux premières parties, l'on définit les structures géométriques classiques et super des espaces de superlacets. Pour ce faire, l'on se restreint aux deux supercercles S1j1 et en s'inspirant des travaux sur LM, l'on détermine une structure de variété de Fréchet des espaces de superlacets SLM = Mor(S1j1;M). Puis l'on introduit la structure super qui nous a semblé la plus naturelle sur SLM en terme de faisceaux. Afin de pouvoir travailler en coordonnées, l'on introduit la structure super par un autre point de vue en considérant l'espace de superlacets SLM comme le foncteur de points SLM. De plus, en interprétant les calculs de Mokhov en terme de jets, ceci nous permet d'une part d'apporter une justification rigoureuse aux-dits calculs et d'autre part, d'obtenir une généralisation directe des méthodes de calculs en coordonnées ("à la physicienne"). Le troisième chapitre expose les résultats de classification obtenus. Comme dans le cas classique, on obtient un théorème de dépendance limitée de l'ordre des jets qui interviennent dans les formes d'ordre 0 et 1. Puis, on obtient une classification des formes d'ordre 0 au moyen de formes différentielles sur la supervariété Mpjq. Une classification des formes homogènes d'ordre 1 et 2 au moyen de métriques Riemaniennes et de connexions sur Mpjq. Enfin le quatrième chapitre est consacré à la généralisation des résultats d'un autre article de O. Mokhov : Complex homogeneous forms on loop spaces of smooth manifolds and their cohomology groups. De par la présence de la variable impaire, on précise tout d'abord la définition des formes homogènes locales sur SLM, puis on démontre que muni de la différentielle extérieure, l'espace des formes homogènes sur SLM d'ordre m 2 N donné définit un complexe. On calcule alors complètement les espaces de cohomologie pour les ordres m = 0 et 1, partiellement pour les ordres 2 et 3 et on explicite ainsi les formes symplectiques exactes obtenues au troisième chapitre.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00739570 |
Date | 19 December 2011 |
Creators | Bovetto, Nicolas |
Publisher | Université Claude Bernard - Lyon I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds