Return to search

Décomposition d'image par modèles variationnels : débruitage et extraction de texture

Cette thèse est consacrée dans un premier temps à l'élaboration d'un modèle variationnel dedébruitage d'ordre deux, faisant intervenir l'espace BV 2 des fonctions à hessien borné. Nous nous inspirons ici directement du célèbre modèle de Rudin, Osher et Fatemi (ROF), remplaçant la minimisation de la variation totale de la fonction par la minimisation de la variation totale seconde, c'est à dire la variation totale de ses dérivées. Le but est ici d'obtenir un modèle aussi performant que le modèle ROF, permettant de plus de résoudre le problème de l'effet staircasing que celui-ci engendre. Le modèle que nous étudions ici semble efficace, entraînant toutefois l'apparition d'un léger effet de flou. C'est afin de réduire cet effet que nous introduisons finalement un modèle mixte, permettant d'obtenir des solutions à la fois non constantes par morceaux et sans effet de flou au niveau des détails. Dans une seconde partie, nous nous intéressons au problème d'extraction de texture. Un modèle reconnu comme étant l'un des plus performants est le modèle T V -L1, qui consiste simplement à remplacer dans le modèle ROF la norme L2 du terme d'attache aux données par la norme L1. Nous proposons ici une méthode originale permettant de résoudre ce problème utilisant des méthodes de Lagrangien augmenté. Pour les mêmes raisons que dans le cas du débruitage, nous introduisons également le modèle T V 2-L1, consistant encore une fois à remplacer la variation totale par la variation totale seconde. Un modèle d'extraction de texture mixte est enfin très brièvement introduit. Ce manuscrit est ponctué d'un vaste chapitre dédié aux tests numériques.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00598289
Date23 November 2010
CreatorsPiffet, Loïc
PublisherUniversité d'Orléans
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds