Return to search

Modèles variationnels et bayésiens pour le débruitage d'images : de la variation totale vers les moyennes non-locales

Le modèle ROF (Rudin, Osher, Fatemi), introduit en 1992 en utilisant la variation totale comme terme de régularisation pour la restauration d'images, a fait l'objet de nombreuses recherches théoriques et numériques depuis. Dans cette thèse, nous présentons de nouveaux modèles inspirés de la variation totale mais construits par analogie avec une méthode de débruitage beaucoup plus récente et radicalement différente : les moyennes non locales (NL-means). Dans une première partie, nous transposons le modèle ROF dans un cadre bayésien, et montrons que l'estimateur associé à un risque quadratique (moyenne a posteriori) peut être calculé numériquement à l'aide d'un algorithme de type MCMC (Monte Carlo Markov Chain), dont la convergence est soigneusement contrôlée compte tenu de la dimension élevée de l'espace des images. Nous montrons que le débruiteur associé permet notamment d'éviter le phénomène de "staircasing", défaut bien connu du modèle ROF. Dans la deuxième partie, nous proposons tout d'abord une version localisée du modèle ROF et en analysons certains aspects : compromis biais-variance, EDP limite, pondération du voisinage, etc. Enfin, nous discutons le choix de la variation totale en tant que modèle a priori, en confrontant le point de vue géométrique (modèle ROF) au cadre statistique (modélisation bayésienne).

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00371438
Date10 December 2008
CreatorsLouchet, Cécile
PublisherUniversité René Descartes - Paris V
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds