L’introduction de dégradations lors du processus de formation d’images est un phénomène inévitable: les images souffrent de flou et de la présence de bruit. Avec les progrès technologiques et les outils numériques, ces dégradations peuvent être compensées jusqu’à un certain point. Cependant, la qualité des images acquises est insuffisante pour de nombreuses applications. Cette thèse contribue au domaine de la restauration d’images. La thèse est divisée en cinq chapitres, chacun incluant une discussion détaillée sur différents aspects de la restauration d’images. La thèse commence par une présentation générale des systèmes d’imagerie et pointe les dégradations qui peuvent survenir ainsi que leurs origines. Dans certains cas, le flou peut être considéré stationnaire dans tout le champ de vue et est alors simplement modélisé par un produit de convolution. Néanmoins, dans de nombreux cas de figure, le flou est spatialement variable et sa modélisation est plus difficile, un compromis devant être réalisé entre la précision de modélisation et la complexité calculatoire. La première partie de la thèse présente une discussion détaillée sur la modélisation des flous spatialement variables et différentes approximations efficaces permettant de les simuler. Elle décrit ensuite un modèle de formation de l’image générique. Puis, la thèse montre que la restauration d’images peut s’interpréter comme un problème d’inférence bayésienne et ainsi être reformulé en un problème d’optimisation en grande dimension. La deuxième partie de la thèse considère alors la résolution de problèmes d’optimisation génériques, en grande dimension, tels que rencontrés dans de nombreux domaines applicatifs. Une nouvelle classe de méthodes d’optimisation est proposée pour la résolution des problèmes inverses en imagerie. Les algorithmes proposés sont aussi rapides que l’état de l’art (d’après plusieurs comparaisons expérimentales) tout en supprimant la difficulté du réglage de paramètres propres à l’algorithme d’optimisation, ce qui est particulièrement utile pour les utilisateurs. La troisième partie de la thèse traite du problème de la déconvolution aveugle (estimation conjointe d’un flou invariant et d’une image plus nette) et suggère différentes façons de contraindre ce problème d’estimation. Une méthode de déconvolution aveugle adaptée à la restauration d’images astronomiques est développée. Elle se base sur une décomposition de l’image en sources ponctuelles et sources étendues et alterne des étapes de restauration de l’image et d’estimation du flou. Les résultats obtenus en simulation suggèrent que la méthode peut être un bon point de départ pour le développement de traitements dédiés à l’astronomie. La dernière partie de la thèse étend les modèles de flous spatialement variables pour leur mise en oeuvre pratique. Une méthode d’estimation du flou est proposée dans une étape d’étalonnage. Elle est appliquée à un système expérimental, démontrant qu’il est possible d’imposer des contraintes de régularité et d’invariance lors de l’estimation du flou. L’inversion du flou estimé permet ensuite d’améliorer significativement la qualité des images. Les deux étapes d’estimation du flou et de restauration forment les deux briques indispensables pour mettre en oeuvre, à l’avenir, une méthode de restauration aveugle (c’est à dire, sans étalonnage préalable). La thèse se termine par une conclusion ouvrant des perspectives qui pourront être abordées lors de travaux futurs / Degradations of images during the acquisition process is inevitable; images suffer from blur and noise. With advances in technologies and computational tools, the degradations in the images can be avoided or corrected up to a significant level, however, the quality of acquired images is still not adequate for many applications. This calls for the development of more sophisticated digital image restoration tools. This thesis is a contribution to image restoration. The thesis is divided into five chapters, each including a detailed discussion on different aspects of image restoration. It starts with a generic overview of imaging systems, and points out the possible degradations occurring in images with their fundamental causes. In some cases the blur can be considered stationary throughout the field-of-view, and then it can be simply modeled as convolution. However, in many practical cases, the blur varies throughout the field-of-view, and thus modeling the blur is not simple considering the accuracy and the computational effort. The first part of this thesis presents a detailed discussion on modeling of shift-variant blur and its fast approximations, and then it describes a generic image formation model. Subsequently, the thesis shows how an image restoration problem, can be seen as a Bayesian inference problem, and then how it turns into a large-scale numerical optimization problem. Thus, the second part of the thesis considers a generic optimization problem that is applicable to many domains, and then proposes a class of new optimization algorithms for solving inverse problems in imaging. The proposed algorithms are as fast as the state-of-the-art algorithms (verified by several numerical experiments), but without any hassle of parameter tuning, which is a great relief for users. The third part of the thesis presents an in depth discussion on the shift-invariant blind image deblurring problem suggesting different ways to reduce the ill-posedness of the problem, and then proposes a blind image deblurring method using an image decomposition for restoration of astronomical images. The proposed method is based on an alternating estimation approach. The restoration results on synthetic astronomical scenes are promising, suggesting that the proposed method is a good candidate for astronomical applications after certain modifications and improvements. The last part of the thesis extends the ideas of the shift-variant blur model presented in the first part. This part gives a detailed description of a flexible approximation of shift-variant blur with its implementational aspects and computational cost. This part presents a shift-variant image deblurring method with some illustrations on synthetically blurred images, and then it shows how the characteristics of shift-variant blur due to optical aberrations can be exploited for PSF estimation methods. This part describes a PSF calibration method for a simple experimental camera suffering from optical aberration, and then shows results on shift-variant image deblurring of the images captured by the same experimental camera. The results are promising, and suggest that the two steps can be used to achieve shift-variant blind image deblurring, the long-term goal of this thesis. The thesis ends with the conclusions and suggestions for future works in continuation of the current work
Identifer | oai:union.ndltd.org:theses.fr/2016LYSES005 |
Date | 01 February 2016 |
Creators | Mourya, Rahul Kumar |
Contributors | Lyon, Becker, Jean-Marie |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0032 seconds