Nesta tese conseguimos obter uma extensão para a fórmula do volume de tubos de H. Weyl para o caso hiperbólico e obter estimativas para o raio de injetividade em termos de invariantes geométricos/topológicos. Provamos, também, que se M é mínima, compacta e mergulhada em S³; e se Λ é uma das componentes conexas de Λ então, obtivemos uma estimativa por baixo para o vol (Λ) em termos da topologia e da geometria intrínsica de M. / In this work we obtain an extension of Weysl's tube formula to the hiperbolic space and estimatives of the radius of injectivity in terms of geometric and topologi- cal invariants. We also prove that if M is a minimal surface, compact and embedded in S³; and if Λ is the connected component of Λ; then obtain a below estimatives for vol (Λ) in terms of the topology and intrinsic geometry of M:
Identifer | oai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/7854 |
Date | January 2006 |
Creators | Figueiredo, Edson Sidney |
Contributors | Ripoll, Jaime Bruck |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds