Vascular tissue engineering (VTE) with the use of polymeric scaffolds offers the potential to generate small-diameter (<6 mm) arteries. In this thesis, a degradable polar hydrophobic ionic (D-PHI) polyurethane porous scaffold was synthesized with the objective of demonstrating its potential application for VTE. D-PHI scaffold synthesis was optimized, maximizing isocyanate and methacrylate monomer conversion. Through the incorporation of a lysine-based crosslinker, scaffold mechanical properties and swelling were manipulated. Furthermore, D-PHI scaffolds demonstrated the ability to support the growth and adhesion of A10 vascular smooth muscle cells (VSMCs) during two weeks of culture. This study also investigated the effect of a double porogen approach on D-PHI scaffold properties, demonstrating an increase in the total scaffold porosity and pore interconnectivity. Specifically, it was found that the use of 10 wt% polyethylene glycol and 65 wt% sodium bicarbonate porogens resulted in a porous (79±3%) D-PHI scaffold with the mechanical properties (elastic modulus=0.16±0.03 MPa, elongation-at-yield=31±5%, and tensile strength=0.04±0.01 MPa) required to withstand the physiologically-relevant cyclic mechanical strain (CMS) that is experienced by VSMCs in vivo. Furthermore, the effects of uniaxial CMS (10% strain, 1 Hz, 4 weeks) on human coronary artery smooth muscle cells (hCASMCs), which were cultured in a porous D-PHI scaffold, were studied using a customized bioreactor. Four weeks of CMS was shown to yield greater DNA mass, more cell area coverage, a better distribution of cells within the scaffold, the maintenance of contractile protein expression and the improvement of tensile mechanical properties. The in vitro and in vivo degradation as well as the in vivo biocompatibility of D-PHI scaffolds were also investigated. Following their subcutaneous implantation in rats (100 days), porous D-PHI scaffolds demonstrated more cell/tissue infiltration within their pores and degraded in a controlled manner and at a faster rate when compared to in vitro studies (120 days), retaining the mechanical integrity required during neo-tissue formation. This thesis provides significant insight into the role of the D-PHI scaffold in combination with physiologically-relevant CMS in modulating VSMC proliferation and phenotype. The findings of this work can be used to tailor vascular tissue regeneration by regulating VSMC function in a directed manner.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/31938 |
Date | 11 January 2012 |
Creators | Sharifpoor, Soror |
Contributors | Santerre, J. Paul, Simmons, Craig Alexander |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0027 seconds