The latest developments of mobile devices include a variety of hardware features that allow for more rich data collection and services. Numerous sensors, Internet connectivity, low energy Bluetooth connectivity to other devices (e.g., smart watches, activity tracker, health data monitoring devices) are just some examples of hardware that helps to provide additional information that can be beneficially used for many application domains. Among others, they could be utilized in mobile learning scenarios (for data collection in science education, field trips), in mobile health scenarios (for health data collection and monitoring the health state of patients, changes in health conditions and/or detection of emergency situations), and in personalized recommender systems. This information captures the current context situation of the user that could help to make mobile applications more personalized and deliver a better user experience. Moreover, the context related information collected by the mobile device and the different applications can be enriched by using additional external information sources (e.g., Web Service APIs), which help to describe the user’s context situation in more details. The main challenge in context modeling is the lack of generalization at the core of the model, as most of the existing context models depend on particular application domains or scenarios. We tackle this challenge by conceptualizing and designing a rich generic context model. In this thesis, we present the state of the art of recent approaches used for context modeling and introduce a rich context model as an approach for modeling context in a domain-independent way. Additionally, we investigate whether context information can enhance existing mobile applications by making them sensible to the user’s current situation. We demonstrate the reusability and flexibility of the rich context model in a several case studies. The main contributions of this thesis are: (1) an overview of recent, existing research in context modeling for different application domains; (2) a theoretical foundation of the proposed approach for modeling context in a domain-independent way; (3) several case studies in different mobile application domains.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-60850 |
Date | January 2017 |
Creators | Sotsenko, Alisa |
Publisher | Linnéuniversitetet, Institutionen för medieteknik (ME), Växjö : Faculty of Technology, Linnaeus University |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Reports: Faculty of Technology, Linnaeus University ; 48 |
Page generated in 0.0021 seconds