This thesis looked at traffic crashes in the emirate of Dubai in the United Arab Emirates (UAE) to establish the current situation in road safety and ways of improving it. A global overview of road safety literature revealed that standards of road safety vary widely by region. Key indicators like fatality rate and risk (Jacobs et al, 2000) were found to be higher in most neighbouring Gulf Cooperative Council (GCC) countries (10-25 fatalities/100,000 pop., 3-5 fatalities/10,000 motor vehicles) than in the best-performing Western countries (6 fatalities/100,000 pop., 1 fatality/10,000 motor vehicles). Interventions and countermeasures to tackle specific road safety issues were reviewed from international studies. Countermeasures were chosen with consideration for the local situation in Dubai within the categories of Human, Environmental and Vehicle factors. Examples of selected measures include offending driver punishment (Human), Electronic Stability Control (Vehicle) and central barriers (Environment). These measures were mostly studied in different environments to those in Dubai so the aspect of knowledge transfer between areas of different cultural and environmental conditions was discussed. Data from real world injury crashes (as collected by Dubai Police and the Roads & Transport Authority) over twelve years (1995 2006) were subject to macroanalysis in SPSS to identify the main issues over the past decade. 18,142 crashes involving 30,942 casualties and 48,960 vehicles were analysed at the outset. The following issues were among the main concerns: - High proportion of fatal crashes out of all injury crashes (13.5% compared to 1.4% in the UK); - Most fatal crashes involved a single vehicle hitting a pedestrian; - Most injury crashes involved a single vehicle; - Inconsiderate driving was the most common crash cause cited by the police. Countermeasures found in the literature to counteract these problems were then suggested for application and the estimated savings from applying them were calculated. Savings were quantified as either reductions in casualties or injury crashes. Furthermore, cost savings for the calculated reductions were estimated using existing UK crash costs due to the scarcity of UAE crash cost estimates. Calculation of the estimated improvement in safety if these countermeasures were applied retrospectively meant a reduction of 4,634 injury crashes and 1,555 casualties over the 12-year period with an estimated cost saving of approximately £368 million or 2.7 billion Dirhams. To refine this method more detailed data on crashes were required and collected from the dedicated crash investigation team files in Dubai Police for 2006 and part of 2007. This new dataset (300 crashes) was put into a purpose-built database with over 140 fields and subject to microanalysis to more accurately match the problems and interventions. Six interventions were matched to individual cases in the database where they would have positively altered the outcome. This process was verified by independent crash experts and investigators. The benefits from these six countermeasures were then weighted to calculate the benefits for the whole crash population over a year. Examples of specific interventions included guardrails along the roadside; grade-separated crossing facilities for pedestrians; Electronic Stability Control and speed cameras. The estimated total reduction in crashes was 2,412 annually with calculated savings of £40 million or 280 million Dirhams. This was the first time this geographical area was studied in such depth and detail to allow the calculation of benefits from interventions matched to known road safety issues. Various limitations were encountered such as the unavailability of GIS basemaps and the continuously changing infrastructure and population of Dubai. Numerous areas of further work were identified. Such work areas include hospital studies for collecting injury data to compare with police data; changing vehicle standards so that they are better suited to local crash types; the calculation of crash and injury costs based on local figures; vehicle fleet analysis for comparing different vehicle segments and exposure; and improved data collection and storage methods.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:515624 |
Date | January 2010 |
Creators | Al-Dah, Mostapha K. |
Publisher | Loughborough University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://dspace.lboro.ac.uk/2134/5965 |
Page generated in 0.0013 seconds