Return to search

Applying Revenue Management to the Last Mile Delivery Industry / Tillämpbarheten av intäktsoptimering på Sista Milen Industrin

The understanding of what motivates a customer to pay more for a product or service has al-ways been a fundamental question in business. To the end of answering this question, revenue management is a business practice that revolves around using analytics to predict consumer behavior and willingness-to-pay. It has been a common practice within the commercial airline and hospitality industries for over 30 years, allowing adopters to reach their service capacity with increased profit margins. In this thesis, we investigated the possibility to apply revenue management to the last mile delivery industry, an industry that provides the service of delivering goods from e-commerce companies to the consumer’s front door. To achieve this objective, a revenue management framework was conceived, detailing the interaction between the customer and a dynamic pricing model. The model itself was a product of a machine learning model, intended to segment the customers and predict the willingness-to-pay of each customer segment. The performance of this model was tested through a quantitative study on synthetic buyers, subject to parameters that influence their willingness-to-pay. It was observed that the model was able to distinguish between different types of customers, yielding a pricing policy that increased profits by 7.5% in comparison to fixed price policies. It was concluded that several factors may impact the customer’s willingness-to-pay within the last mile delivery industry. Amongst these, the convenience that the service provides and the disparity between the price of the product and the price of the service were the most notable. However, the magnitude of considering these parameters was never determined. Finally, em-ploying dynamic pricing has the potential to increase the availability of the service, enabling a wider audience to afford the service. / Vad som motiverar en kund att betala mer för en tjänst eller en produkt har länge varit ett centralt koncept inom affärslivet. Intäktsoptimering är en affärspraxis som strävar efter att besvara den frågan, genom att med analytiska verktyg mäta och förutse betalningsviljan hos kunden. Intäktsoptimering har länge varit framträdande inom flyg- och hotellbranschen, där företag som anammat strategin har möjlighets att öka försäljningsvinsten. I detta examensarbete undersöker vi möjligheten att applicera intäktsoptimering på sista milen industrin, en industri som leverar köpta produkten hem till kunden. För att uppnå detta har vi tagit fram ett ramverk för informationsflöden inom intäktsoptimering som beskriver hur kunder interagerar med en dynamisk prissättningsmodell. Denna prissättningsmodell framställs genom maskininlärning med avsikt att segmentera kundbasen, för att sedan förutse betalningsviljan hos varje kundsegment. Modellens prestanda mättes genom en kvantitativ studie på syntetiska kunder som beskrivs av parametrar som påverkar betalningsviljan. Studien påvisade att modellen kunde skilja på betalningsviljan hos olika kunder och resulterade i en genomsnittlig vinstökning på 7.5% i jämförelse med statiska prissättningsmodeller. Det finns mänga olika faktorer som spelar in på kundens betalningsvilja inom sista milen industrin. Bekvämlighet och skillnader i priset på produkten som levereras och tjänsten att leverera produkten är två anmärkningsvärda faktorer. Hur stor inverkan faktorerna som beskrivs i detta examensarbete, har på betalningsviljan, förblev obesvarat. Slutligen uppmärksammades möjligheten att, med hjälp av dynamisk prissättning, öka tillgängligheten av tjänsten då flera kunder kan ha råd med en prissättning som överväger deras betalningsvilja.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-246079
Date January 2018
CreatorsFinnman, Peter
PublisherKTH, Industriell ekonomi och organisation (Inst.)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-ITM-EX ; 2018:642, TRITA-ITM-EX 2018 ; 642

Page generated in 0.0026 seconds