Return to search

Wasserstoffeffekt und -analyse in der GDS - Anwendungen in der Werkstoffforschung / Hydrogen Effect and Analysis in GDS - Applications in Material Science

Im Rahmen der Dissertation wurden mit der Glimmentladungs-Spektrometrie Materialproben untersucht, die Wasserstoff enthalten. Auch sehr geringe Gehalte, z.B. im µg/g-Bereich, können nachgewiesen werden. GD-OES ist oft die einzige Methode, die für diese analytische Aufgabenstellung zur Verfügung steht. Die Anwesenheit von Wasserstoff im Glimmentladungsplasma bewirkt verschiedene Effekte: (i) die Signalintensitäten der meisten analytischen Emissionslinien und der des Trägergases werden beeinflußt, (ii) aus dem Wasserstoffkontinuum resultiert ein erhöhter spektraler Untergrund, (iii) der elektrische Widerstand des Plasmas steigt und (iv) die Abtragsraten sinken. Zum Verständnis dieser Effekte werden grundlegende Untersuchungen zu den Anregungs- und Ionisationsmechanismen im Glimmentladungsplasma durchgeführt. Da es keine geeigneten Materialien gibt, für die der Gehalt an Wasserstoff stabil sind, wurden die Wasserstoffeffekte und die Möglichkeit des Nachweises von Wasserstoff durch Zugabe wohl definierter Mengen gasförmigen Wasserstoffs in das GD-Plasma simuliert. Für die Änderungen (i) de Analyt- und Trägergassignale, (ii) des Entladungsstroms als abhängigen GD-Pa-rameter sowie (iii) des Wasserstofflinien- und Kontinuumspektrums wurde experimentell festgestellt, dass sie sehr ähnlich sind, unabhängig davon, ob der Wasserstoff aus der Probe kommt oder als Gas ins Plasma eingeleitet wird. Die Anwesenheit von Wasserstoff im GD Plasma beeinflußt die Form des Abtragskraters, durch den die Tiefenauflösung bestimmt wird. Dieser Effekt kann gezielt bei nichtleitenden Schichtmaterialien genutzt werden, um die Tiefenauflösung zu verbessern. Weiterhin können Empfindlichkeit und Nachweisgrenze von bestimmten Emissionslinien eines Analyten verbessert werden. Der Was-serstoff im elektrolytischen (Cd- oder Zn-)Schichtsystem kann die Materialeigenschaften ver-schlechtern. Beispielhaft sei die Versprödung genannt. Mit der GD-OES Tiefen-profilanalyse kann die Wirkung thermischer Nachbehandlungen, die in der Technik üblich sind, verfolgt werden. Es konnte an praktischen Beispielen gezeigt werden, dass für erfolgreiche Anwendungen der GD-OES für Dünnschichtanalytik die Reinheit (d.h. minimale H-Effekte) der GD-Quelle von entscheidender Bedeutung ist.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1043735902484-90570
Date24 December 2002
CreatorsHodoroaba, Vasile-Dan
ContributorsTechnische Universität Dresden, Maschinenwesen, Prof. Dr. rer. nat. habil. Klaus Wetzig, Prof. Dr. Edward B.M. Steers, Prof. Dr. Arne Bengtson, Prof. Dr. rer. nat. habil. Klaus Wetzig, Prof. Dr.-Ing. habil. Wolfgang Paatsch
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0028 seconds