The aim of this research dissertation is at studying natural and mixed convections of fluid flows, and to develop and validate numerical schemes for interface tracking in order to treat incompressible and immiscible fluid flows, later. In a first step, an original numerical method, based on Finite Volume discretizations, is developed for modeling low Mach number flows with large temperature gaps. Three physical applications on air flowing through vertical heated parallel plates were investigated. We showed that the optimum spacing corresponding to the peak heat flux transferred from an array of isothermal parallel plates cooled by mixed convection is smaller than those for natural or forced convections when the pressure drop at the outlet keeps constant. We also proved that mixed convection flows resulting from an imposed flow rate may exhibit unexpected physical solutions; alternative model based on prescribed total pressure at inlet and fixed pressure at outlet sections gives more realistic results. For channels heated by heat flux on one wall only, surface radiation tends to suppress the onset of recirculations at the outlet and to unify the walls temperature. In a second step, the mathematical model coupling the incompressible Navier-Stokes equations and the Level-Set method for interface tracking is derived. Improvements in fluid volume conservation by using high order discretization (ENO-WENO) schemes for the transport equation and variants of the signed distance equation are discussed
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00806510 |
Date | 12 December 2012 |
Creators | Li, Ru |
Publisher | Université Paris-Est |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0021 seconds