• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 6
  • 4
  • 1
  • Tagged with
  • 32
  • 32
  • 13
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical simualtion of mixed convection over a three-dimensional horizontal backward-facing step

Barbosa Saldana, Juan Gabriel 29 August 2005 (has links)
A FORTRAN code was developed to numerically simulate the mixed convective flow over a three-dimensional horizontal backward-facing step. The momentum and energy equations under the assumption of the Boussinesq approximation were discretized by means of a finite volume technique. The SIMPLE algorithm scheme was applied to link the pressure and velocity fields inside the domain while an OpenMP parallel implementation was proposed to improve the numerical performance and to accelerate the numerical solution. The heating process corresponds to a channel heated from below at constant temperature keeping insulated all the other channel walls. In addition, the back-step was considered as a thermally conducting block and its influence in the heating process was explored by holding different solid to fluid thermal conductivity ratios. The effects over the velocity and temperature distribution of buoyancy forces, acting perpendicular to the mainstream flow, are studied for three different Richardson numbers Ri=3, 2, and 1 and the results are compared against those of pure forced convection Ri=0. In these simulations the Reynolds number is fixed at 200 while the bottom wall temperature is adjusted to fulfill the conditions for the different Ri. Under this assumption, as Ri increases the buoyancy effects are the dominant effects in the mixed convective process. The numerical results indicate that the velocity field and the temperature distribution for pure forced convection are highly distorted if compared with the mixed convective flow. If the Ri parameter is increased, then the primary re-circulation zone is reduced. Similarly, as the buoyancy forces become predominant in the flow, the convective rolls, in the form of spiral-flow structures, become curlier and then higher velocity components are found inside the domain. The temperature field distribution showed that as the Ri is increased a thicker layer of high temperature flow is located at the channel??s top wall as a result of the higher rates of low-density flow moving to the top wall. The flow is ascending by the channel sidewalls, while descending by the channel span-wise central plane. The parallel numerical strategy is presented and some results for the performance of the OpenMP implementation are included. In this sense, linear speedup was obtained when using 16 possessors in parallel.
2

Particle Image Velocimetry Applied to Mixed Convection in a Rectangular Enclosure

Barrick, Karen 02 1900 (has links)
An investigation of mixed convection in a rectangular enclosure is presented in which the velocity fields in the enclosure are determined using Particle Image Velocimetry (PIV). Basically, this technique records optical images of flow tracers within a flow field, and determines the velocity field by measuring the displacement of the flow tracers during short time intervals. The components which comprise the PIV system and its operation are described in detail to familiarize the reader with this relatively new technique. The main objective of this investigation is to determine the accuracy and applicability of the PIV technique as a velocity measurement tool. This is accomplished by comparing present experimental velocity results to those obtained by Nurnberg [2] using Laser Doppler Anemometry (LDA). LDA has been proven to be an accurate velocity measurement tool and provides data for evaluating PIV results. A second objective of this research is to use the PIV results to verify a numerical code written by Nurnberg [2] which predicts the velocity fields in the rectangular enclosure. However, the comparison of experimental results of the two measurement techniques revealed that the PIV results were too inaccurate to perform this function. The large amount of error present in this PIV system prompted the recommendation of an improved, more accurate system. Although this improved system is very expensive - approximately $40,000 - it will provide velocity measurements with an accuracy close to that of LDA, at half the cost of an LDA system and with far less time for data acquisition and analysis. / Thesis / Master of Engineering (ME)
3

Role Of Mixed Convection In Cooling Of Electronics

Gavara, Madhusudhana Rao 12 1900 (has links)
Cooling of electronic components is one of the most important issues concerned in the electronic industry for design of equipment. Maintaining the temperature of an electronic device within its safe operating temperature limits is essential to operate the equipment safely with proper functionality. According to the Arrhenious law of failure rate, for a device with activation energy 0.65eV, every 10°C increase in temperature doubles the failure rate. Recent miniaturisation of components and high device heat dissipation rates lead to high heat fluxes, which cause temperature rise. Hence, there is an increasing need for research to achieve high heat removal rates and optimal design. Several cooling techniques are used for cooling of electronics based on the application and cooling rate requirements. Air-cooling of electronics has a wide range of applications due to its greater reliability, simplicity, easy maintenance, low cost, easy availability of coolant (air), and light weight. Air-cooling is also free from boiling and dripping problems. Air-cooling is used in applications such as avionics, cooling of personal computers, cooling of data centers, and in automobile electronics. In a typical electronic cooling application, cooling fluid is driven by the combination of external pressure forces and buoyancy forces. Based on the relative contribution of these forces towards the total driving force, the cooling techniques can be categorized as forced, natural or mixed convection cooling. However, in many of the electronic cooling situations, such as in the applications with very high heat fluxes, tall Printed Circuits Boards (PCBs) with low forced convection velocity, and in large scale applications such as data centers, the contributions of the buoyancy forces and external pressure forces for the total driving force are comparable, which results in a mixed convection situation. In the present study, mixed convection in vertical channels heated with five heating configurations, which represent typical electronic cooling applications, is studied numerically. The five different heating configurations are channels with flush-mounted continuous heater, flush-mounted strip heaters, flush-mounted square block heaters, protruding rib heaters and protruding square heaters. The first three configurations are categorised as flush-mounted heating configurations and the latter two configurations are categorised as protruded heating configurations. One of the channel walls represents the substrate on which the heaters are mounted and the heat sources represent the heat generating electronic components. Heat transfer under steady state conditions is considered in the study. The study includes laminar as well as turbulent heat transfer. For a systematic study of mixed convection, an analytical or semi-analytical formulation is desirable for a simplified model, as it can highlight the effect of relevant non-dimensional parameters on the heat transfer characteristics of a system. The results of a simplified model can be used for benchmarking the results of practical situations. Hence, before numerically solving the governing equations for mixed convection in channels, mixed convection boundary layer flows over a heated vertical plate is considered for study. Perturbation technique is used to solve the boundary layer equations with non-isothermal boundary conditions. The perturbation analysis is carried out for an arbitrarily variation of wall temperature or heat flux. Subsequently, the results are extended to find heat transfer rates in the cases of power-law variation of temperature and heat flux, as special cases. It is always required to design a cooling system to remove maximum possible amount of heat, keeping the device temperature within its safe operating limits. Hence, optimization of heat transfer in boundary layers is attempted, whose results can be used as guidelines to achieve optimal heat transfer in practical situations of channels with continuous as well as discrete heating. Similarity analysis is used for the optimization of heat distribution in boundary layer flows. In the similarity analysis, in the search of optimal heat transfer from the plate, the boundary layer equations are solved for various power-law heat flux variations and the appropriate power-law variation of optimal heat transfer is found. Similarly, the heat flux variation for optimal heat transfer is found for the cases of natural and forced convection, as they are the limiting cases of mixed convection. In the numerical part of the study, the generalised three-dimensional governing equations for the five heating configurations considered for the study are solved numerically with appropriate boundary conditions. Separation of natural, forced and mixed convection regimes is carried out in all the heating configurations using a criterion based on individual contributions of pressure force and buoyancy force towards the total driving force for the fluid movement. Heat transfer characteristics are studied in laminar as well as turbulent regimes in terms of parameters such as Grashof number, Reynolds number, Nusselt number, maximum temperature of heaters, pressure drop across the channel, and so on. The influence of conjugate effects on the heat transfer characteristics is studied by varying the substrate thermal conductivity. A systematic comparison of various effects such as the effect of discrete heating in plain channels, effect of discrete heating in channels with heated ribs, and the effect of three-dimensional protrusions on heat transfer, is achieved. The parameters in the individual configurations, which affect heat transfer, are explored for better cooling solutions. Optimal heat distribution among the heaters to minimise the temperature of the hottest heater for a given total amount of heat generation in the channel is found for all the channel configurations, which are heated either continuously or discretely. In the process of finding the optimal heat distribution among heaters, guidelines are taken from the optimal heat distribution in boundary layer flows. Compared to usual optimization approaches such as genetic algorithm, the present physics based optimisation procedure requires fewer runs to arrive at the optimal distribution. The fluid flow characteristics in all the three configurations with flush-mounted heaters are found to be similar. However, heat transfer characteristics in channels with flush-mounted square heaters differ from those in the other two flush-mounted channel configurations. Hot spots with higher temperatures are found at heater locations in channels with flush-mounted square heaters. The effect of substrate follows the same trend in all the flush-mounted configurations. At lower thermal conductivities, the maximum temperature decreases sharply with increasing thermal conductivity. However, at higher conductivities, the influence reduces. In all the flush-mounted configurations, heat transfer will not be influenced by substrate thermal conductivity increment at conductivities more than 150 times the fluid thermal conductivity. The fluid flow and heat transfer characteristics in channels with protruded heaters differ significantly from those in channels with flush-mounted heaters. The protrusions in the channels interact with the fluid flow and make it different from that of smooth channels. In turn, the protrusions affect heat transfer characteristics in the channels. The influence of the protrusions on the heat transfer and locations of hot spots in the domain is examined. Effect of thermal conductivity in channels with protruded square heaters is similar to that in channels with flush-mounted heaters. However, conductivity in channels with protruded rib heaters affects the heat transfer in a wider range of conductivities than in the other heating configurations. Unlike in the other configurations, at low thermal conductivities, maximum temperature does not drop sharply with increase of conductivity. In channels with protruded square heaters, staggering arrangement of heaters results in higher heat transfer rates than those with in-line heater arrangement. In all the configurations, pressure drop is found to be independent of Grashof number in the range of heat dissipation rates considered in the study. Heat transfer rates in turbulent region are much higher than the heat transfer rates in laminar regime. However, the pressure drops encountered are also high in the turbulent regime. Turbulent heat transfer results in a more uniform temperature distribution in channels. The cooling performances of the individual configurations are compared. For a given pressure drop the cooling performances decreases in the order of flush-mounted strip heating, protruded square heating, flush-mounted square heating, protruded rib heating. For a given inlet fluid flow rate, the cooling performances decreases in the order of protruded rib heating, protruded square heating, flush-mounted square heating, flush-mounted strip heating. However, for a given inlet fluid flow rate, the pressure drop increases in the order of increasing cooling performance.
4

Numerical analysis of laminar convective heat transfer of ribs in the parallel-plate channel

Yang, Min-hsiung 08 July 2010 (has links)
Numerical study of laminar convective cooling of ribs in a parallel plate channel is investigated. Single rib mounted on one channel wall in forced, mixed and free convection is analyzed. Furthermore, the series ribs array with in-line and staggered mounted on channel walls are considered. Through the use of a stream function vorticity transformation, solution of the transformed governing equations for the system is obtained using the control volume method with non-uniform grid. The effects of the Reynolds number, thermal conductivity ratio of rib to fluid and rib¡¦s profile area on heat transfer rate of single rib and rib array are presented. In addition, the effects of the length from inlet to the first rib and the space between ribs for rib array are carried out. A correlation for single and rib array in forced convection is presented to estimate the optimum aspect ratio of rib with various Reynolds number, thermal conductivity ratio of rib to fluid, rib¡¦s profile area. Furthermore, the results of different Gr/Re2 and various channel inclination angle in mixed convection are also examined numerically. The results indicate that both in forced and mixed convection, the optimum aspect ratio of a rib corresponding to the rib with maximum heat transfer rate increases with increasing Re but decreases with K for a fixed rib profile area. In forced convection the optimum aspect ratio of rib array increases with rib¡¦s space but decreases with the length from inlet to the first rib of channel. Then, numerical correlations to predict the optimum aspect ratio of single rib and rib array are developed for fixed rib¡¦s area with various Re, K and rib number. In mixed convection, the optimum aspect ratios of single rib and staggered rib array increase with not only the inclination angle but also Gr/Re2.
5

Numerical Study Of Laminar And Turbulent Mixed Convection In Enclosures With Heat Generating Components

Tarasing, Bhoite Mayur 07 1900 (has links)
The problem of laminar and turbulent conjugate mixed convection flow and heat transfer in shallow enclosures with a series of block-like heat generating components is studied numerically for a Reynolds number range of zero (pure natural convection) to typically 106, Grashof number range of zero (pure forced convection) to 1015 and various block-to-fluid thermal conductivity ratios, with air as the working medium. The shallow enclosure has modules consisting of heat generating elements, air admission and exhaust slots. Two problems are considered. In the first problem, the enclosure has free boundaries between the modules and in the second problem, there are partitioning walls between the different modules. The flow and temperature distributions are taken to be two-dimensional. Regions with the same velocity and temperature distributions can be identified assuming repeated placement of the blocks and fluid entry and exit openings at regular distances, neglecting end wall effects. One half of such rectangular region is chosen as the computational domain taking into account the symmetry about the vertical centreline. On the basis of the assumption that mixed convection flow is a superposition of forced convection flow with finite pressure drop and a natural convection flow with negligible pressure drop, the individual flow components are delineated. The Reynolds number is based on forced convection velocity, which can be determined in practice from the fan characteristics. This is believed to be more meaningful unlike the frequently used total velocity based Reynolds number, which does not vanish even in pure natural convection and which makes the fan selection difficult. Present analysis uses three models of turbulence, namely, standard k-ε (referred to as Model-1), low Reynolds number k-ε (referred to as Model-2) and an SGS kinetic energy based one equation model (referred to as Model-3). Results are obtained for aiding and opposing mixed convection, considering also the pure natural and pure forced convection limiting cases. The results show that higher Reynolds numbers tend to create a recirculation region of increasing strength at the core region and that the ranges of Reynolds number beyond which the effect of buoyancy becomes insignificant are identified. For instance, in laminar aiding mixed convection, the buoyancy effects become insignificant beyond a Reynolds number of 500. Results are presented for a number of quantities of interest such as the flow and temperature distributions, local and average Nusselt numbers and the maximum dimensionless temperature in the block. Correlations are constructed from the computed results for the maximum dimensionless temperature, pressure drop across the enclosure and the Nusselt numbers.
6

[en] INITIAL VALUE METHOD FOR THE SOLUTION OF NON-SIMILAR BOUNDARY LAYERS APPLIED TO A WEDGE IN MEXED CONVECTION / [pt] MÉTODO DE VARREDURA DE VALORES INICIAIS PARA A SOLUÇÃO DE PROBLEMAS NÃO SIMILARES DE CAMADA DE LIMITE APLICADO A UMA CUNHA EM CONVECÇÃO MISTA

JOSE VIRIATO COELHO VARGAS 04 June 2012 (has links)
[pt] O presente trabalho apresenta o método de varredura de valores iniciais para a solução de problemas não-similares de camada limite, aplicado a uma cunha em convecção mista. É feita uma análise dos efeitos da força de empuxo nas características de transferência de calor e atrito, na superfície da cunha submetida a um escoamento laminar em convecção forçada. Os casos analisados referem-se a temperatura uniforme na superfície e a fluxo de calor uniforme através da superfície. Apresentam-se resultados numéricos para a placa vertical e a cunha em 120 graus celsius (problema similar), os quais foram comparados com os disponíveis na literatura, apresentando-se excelente concordância. Ainda são apresentados resultados para a cunha em 90 graus celsius e em 180 graus Celsius. Os resultados foram obtidos para o número de Prandtl 0,7 em uma larga faixa do parâmetro de não-similaridade (0 a 100 para temperatura uniforme e 0 a 5 para fluxo de calor uniforme). Em geral, verifica-se que para ambos os casos estudados de condições da superfície, o coeficiente de atrito local e o número de Nusselt local aumentam com o aumento da força de empuxo para o escoamento ajudado e diminuem com o aumento da força de empuxo para o escoamento ajudado e diminuem com o aumento da força de empuxo para o escoamento oposto. Verifica-se também que os efeitos de convecção natural diminuem com o aumento do ângulo da cunha. Compara-se, por fim os resultados de transferência de calor entre os dois casos estudados. O método possibilita a obtenção de resultados com o uso de um microcomputador PC AT-286 com o co-processador matemático, sem o uso de dupla precisão. As tolerâncias utilizadas para a convergência são as mesmas dos resultados disponíveis na literatura. Adicionalmente, o tempo computacional necessário para a obtenção das soluções foi bastante reduzido. Para toda a faixa de variação do parâmetro de não-similaridade, o equacionamento utilizado foi o mesmo, baseado em parâmetros de correlação para convecção forçada em uma superfície plana com injeção de massa, com ótima concordância com resultados disponíveis na literatura. / [en] The present work introduces a method for searching initial values, to solve non-similar Boundary Layer problems. The new method has been applied to the problem of mixed convection on a Wedge. An analysis is performed to study the effects of buoyancy force on the heat transfer and friction characteristics of laminar forced convection flow which is either maintained at a uniform temperature or subjected to a uniform temperature or subjected to a uniform heat flux. Numerical results are presented for Prandtl number of 7,0 over a wide range of values of the buoyancy force parameters (0 to 100 for uniform temperature and 0 to 5 for uniform heat flux). The results for the vertical plate and for the similar wedge (120 graus celsius) Have been compared with solutions availabein the literature, showing an excellent agreement. In addition, solutions for the 90 degree celsius wedge and for the flat wall (180 degree celsius are also obtained. In general, it is found that for both surface heating conditions, the local friction factor and the local Nusselt number increase with increasing bouyancy force for assisting flow and decrease with inscreasing bouyancy force for opposing flow. Further, the effects of the buoyancy force on these two quantities are found to diminish as the angle of the wedge increases. A comparison is also made of the results beteween the case of uniform wall temperature and the case of uniform surface heat flux. The method turns possible to obtain results with the use of a microcomputer PC AT-286 with a Math co-processor, discarding the use of double precision. The tolerances for convergence are the same as the results available in the literature. The necessary computacional time to get the solution was greatly reduced. For the entire range of the buoyancy force parameter, the governing equations are the same, based upon forced convection parameters. To illustrate the flexibility of the method, the surface mass trasnfer problem of uniform injection (blowing) in a flat plate under forced cnvection, has been solved and the results compared with the available ones in the literature.
7

Experimental and Computational Analysis of Mixed Convection Around In-Line Cylinders

Hollingshead, Christopher 11 1900 (has links)
This work can be viewed in three separate sections, each of which build off of the prior. The first part of this study examined the flow in a 1/16th scale calandria test section based on a typical CANDU moderator layout. The experiments utilized forced flow supplied to the vessel and electrical heated rods to mimic the heat flow from calandria tubes. The size of the vessel, flow rates, and power levels were used to scale the experiments such that the provided representative temperature fields. The temperature field inside the vessel was measured and shown to compare well with CFD predictions over a wide range of inlet conditions and power levels. Additionally, this work addressed the scaling distortions in the experiment which occurred due to physical limitations when performing experiments at 1/16 scale (e.g., a smaller number of heater rods with a larger diameter were used in the experiment because at 1/16-scale direct fabrication of 390 fuel channel simulators is not feasible). The work proposed the H factor addition to the Ar. This additional scaling criteria was shown to better maintain the flow regimes expected CANDU moderators by taking into account distortions introduced by surface heating instead of volumetric heating in addition to the reduction in total number of tubes. While this work involved forced convective flows at the inlet of the vessel, in some regions of the calandria buoyancy induced forces were sufficiently high such that these phenomena altered the direction and magnitude of the flows as compared to purely forced convective behavior. Hence further work, discussed below, was initiated to better understand and measure these local phenomena where buoyancy forces are of similar magnitude as those of forced convection. Such local conditions we have terms mixed convection regime for the purposes of this thesis. The second part of this work further examined the mixed convection between a subset of the CANDU calandria tubes, namely how does a lower tube effect the mixed convection heat transfer of the upper tube in an inline arrangement. To isolate and measure the phenomena with sufficient detail, a small number of tubes was studied and advanced diagnostics such as Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) were employed. This study combined fluid velocity, temperature and wall temperature measurements with CFD simulations to develop a mechanistic model and understanding of the effect of natural convection plumes from lower elevations on the natural circulation phenomena on an upper cylinder. Superposition of the natural convection phenomena combined with pseudo forced convection effects from the lower elevation cylinder’s plume was used to model the mixed convection phenomena. This model was shown to perform well, with nearly all data being predicted to with +-20% for experiments performed in this work, and experiments in literature. A major finding from the preceding discussion is the importance of the lower elevation plume velocity on the local phenomena on the upper cylinder. The third section further expanded upon the prior two by replacing the lower cylinder with a diffuser nozzle which could provide a forced convective component with accurately defined velocities. Such measurements allow for accurate definition of the local Ri number and allowed full access for instrumentation to observe the velocity fields. The major contribution of this work was a flow regime map that defined the phenomena around a heated cylinder under mixed convection conditions. Additionally, the establishment of a database of fluid temperature and velocity measurements for a wide range of Ri was also developed and used to further validate CFD predictions. / Thesis / Doctor of Philosophy (PhD)
8

Turbulent Mixed Convection

Ramesh Chandra, D S 04 1900 (has links)
Turbulent mixed convection is a complicated flow where the buoyancy and shear forces compete with each other in affecting the flow dynamics. This thesis deals with the near wall dynamics in a turbulent mixed convection flow over an isothermal horizontal heated plate. We distinguish between two types of mixed convection ; low-speed mixed convection (LSM) and high-speed mixed convection (HSM). In LSM the entire boundary layer, including the near-wall region, is dominated by buoyancy; in HSM the near-wall region, is dominated by shear and the outer region by buoyancy. We show that the value of the parameter (* = ^ determines whether the flow is LSM or HSM. Here yr is the friction length scale and L is the Monin-Obukhov length scale. In the present thesis we proposed a model for the near-wall dynamics in LSM. We assume the coherent structure near-wall for low-speed mixed convection to be streamwise aligned periodic array of laminar plumes and give a 2d model for the near wall dynamics, Here the equation to solve for the streamwise velocity is linear with the vertical and spanwise velocities given by the free convection model of Theerthan and Arakeri [1]. We determine the profiles of streamwise velocity, Reynolds shear stress and RMS of the fluctuations of the three components of velocity. From the model we obtain the scaling for wall shear stress rw as rw oc (UooAT*), where Uoo is the free-stream velocity and AT is the temperature difference between the free-stream and the horizontal surface.A similar scaling for rw was obtained in the experiments of Ingersoll [5] and by Narasimha et al [11] in the atmospheric boundary layer under low wind speed conditions. We also derive a formula for boundary layer thickness 5(x) which predicts the boundary layer growth for the combination free-stream velocity Uoo and AT in the low-speed mixed convection regime.
9

The Dual Reciprocity Boundary Element Solutions Of Helmholtz-type Equations In Fluid Dynamics

Alsoy-akgun, Nagehan 01 February 2013 (has links) (PDF)
In this thesis, the two-dimensional, unsteady, laminar and incompressible fluid flow problems governed by partial differential equations are solved by using dual reciprocity boundary element method (DRBEM). First, the governing equations are transformed to the inhomogeneous modified Helmholtz equations, and then the fundamental solution of modified Helmholtz equation is used for obtaining boundary element method (BEM) formulation. Thus, all the terms in the equation except the modified Helmholtz operator are considered as inhomogeneity. All the inhomogeneity terms are approximated by using suitable radial basis functions, and corresponding particular solutions are derived by using the annihilator method. Transforming time dependent partial differential equations to the form of inhomogeneous modified Helmholtz equations in DRBEM application enables us to use more information from the original governing equation. These are the main original parts of the thesis. In order to obtain modified Helmholtz equation for the time dependent partial differential equations, the time derivatives are approximated at two time levels by using forward finite difference method. This also eliminates the need of another time integration scheme, and diminishes stability problems. Stream function-vorticity formulations are adopted in physical fluid dynamics problems in DRBEM by using constant elements. First, the procedure is applied to the lid-driven cavity flow and results are obtained for Reynolds number values up to $2000.$ The natural convection flow is solved for Rayleigh numbers between $10^3$ to $10^6$ when the energy equation is added to the Navier-Stokes equations. Then, double diffusive mixed convection flow problem defined in three different physical domains is solved by using the same procedure. Results are obtained for various values of Richardson and Reynolds numbers, and buoyancy ratios. Behind these, DRBEM is used for the solution of natural convection flow under a magnetic field by using two different radial basis functions for both vorticity transport and energy equations. The same problem is also solved with differential quadrature method using the form of Poisson type stream function and modified Helmholtz type vorticity and energy equations. DRBEM and DQM results are obtained for the values of Rayleigh and Hartmann numbers up to $10^6$ and $300,$ respectively, and are compared in terms of accuracy and computational cost. Finally, DRBEM is used for the solution of inverse natural convection flow under a magnetic field using the results of direct problem for the missing boundary conditions.
10

The Dual Reciprocity Boundary Element Solution Of Helmholtz-type Equations In Fluid Dynamics

Alsoy-akgun, Nagehan 01 February 2013 (has links) (PDF)
In this thesis, the two-dimensional, unsteady, laminar and incompressible fluid flow problems governed by partial differential equations are solved by using dual reciprocity boundary element method (DRBEM). First, the governing equations are transformed to the inhomogeneous modified Helmholtz equations, and then the fundamental solution of modified Helmholtz equation is used for obtaining boundary element method (BEM) formulation. Thus, all the terms in the equation except the modified Helmholtz operator are considered as inhomogeneity. All the inhomogeneity terms are approximated by using suitable radial basis functions, and corresponding particular solutions are derived by using the annihilator method. Transforming time dependent partial differential equations to the form of inhomogeneous modified Helmholtz equations in DRBEM application enables us to use more information from the original governing equation. These are the main original parts of the thesis. In order to obtain modified Helmholtz equation for the time dependent partial differential equations, the time derivatives are approximated at two time levels by using forward finite difference method. This also eliminates the need of another time integration scheme, and diminishes stability problems. Stream function-vorticity formulations are adopted in physical fluid dynamics problems in DRBEM by using constant elements. First, the procedure is applied to the lid-driven cavity flow and results are obtained for Reynolds number values up to 2000. The natural convection flow is solved for Rayleigh numbers between 10^3 to 10^6 when the energy equation is added to the Navier-Stokes equations. Then, double diffusive mixed convection flow problem defined in three different physical domains is solved by using the same procedure. Results are obtained for various values of Richardson and Reynolds numbers, and buoyancy ratios. Behind these, DRBEM is used for the solution of natural convection flow under a magnetic field by using two different radial basis functions for both vorticity transport and energy equations. The same problem is also solved with differential quadrature method using the form of Poisson type stream function and modified Helmholtz type vorticity and energy equations. DRBEM and DQM results are obtained for the values of Rayleigh and Hartmann numbers up to 10^6 and 300, respectively, and are compared in terms of accuracy and computational cost. Finally, DRBEM is used for the solution of inverse natural convection flow under a magnetic field using the results of direct problem for the missing boundary conditions.

Page generated in 0.1214 seconds