Return to search

Números complexos : uma análise dos itens de vestibulares

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, Programa de Mestrado Profissional em Matemática em Rede Nacional, 2016. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-07-21T19:58:46Z
No. of bitstreams: 1
2016_JoãoMárioNepomucenoAragãoeSilva.pdf: 1155106 bytes, checksum: 19f615a6c0dd367e6d9077e8cfe93f35 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-08-19T13:01:39Z (GMT) No. of bitstreams: 1
2016_JoãoMárioNepomucenoAragãoeSilva.pdf: 1155106 bytes, checksum: 19f615a6c0dd367e6d9077e8cfe93f35 (MD5) / Made available in DSpace on 2016-08-19T13:01:39Z (GMT). No. of bitstreams: 1
2016_JoãoMárioNepomucenoAragãoeSilva.pdf: 1155106 bytes, checksum: 19f615a6c0dd367e6d9077e8cfe93f35 (MD5) / As primeiras ideias que motivaram o surgimento do conjunto dos números complexos apareceram no século XVI, com o trabalho sistemático dos matemáticos da Itália renascentista em busca de uma fórmula que solucionasse definitivamente as equações do terceiro grau. Desde então levou-se cerca de três séculos para que grandes matemáticos vencessem os obstáculos que impediam a aceitação dessa nova forma de número, e para que fosse definido um novo conjunto cuja raiz quadrada de um número negativo não fosse tomada como um elemento absurdo. Nesse trabalho serão abordadas as concepções básicas de um número complexo, a definição do conjunto e as representações (algébrica, trigonométrica e de Euler) de seus elementos, junto às operações definidas e a interpretação geométrica de cada uma delas. _______________________________________________________________________________________________ ABSTRACT / The first ideas that stimulated the appearance of the complex numbers came on the 16th century with the systematic work of the Renaissance Italy’s mathematicians looking for a formula to solve permanently the third degree equations. Since then it took about three centuries to great mathematicians solve the obstacles about the acceptance of this new number form, and to define a new set where the square root of a negative number could not be taken as an absurd element. In this paper it will be discuss the basic concepts of a complex number, the definition of the set and representations (algebraic, trigonometric and Euler) of their elements, united with the defined operations and the geometric interpretation of each one of those.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unb.br:10482/21259
Date17 June 2016
CreatorsSilva, João Mário Nepomuceno Aragão e
ContributorsMatos, Helder de Carvalho
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UnB, instname:Universidade de Brasília, instacron:UNB
RightsA concessão da licença desta coleção refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data., info:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds