Return to search

[pt] DETECÇÃO DE CONTEÚDO SENSÍVEL EM VIDEO COM APRENDIZADO PROFUNDO / [en] SENSITIVE CONTENT DETECTION IN VIDEO WITH DEEP LEARNING

[pt] Grandes quantidades de vídeo são carregadas em plataformas de hospedagem de vídeo a cada minuto. Esse volume de dados apresenta um desafio no controle do tipo de conteúdo enviado para esses serviços de hospedagem de vídeo, pois essas plataformas são responsáveis por qualquer mídia
sensível enviada por seus usuários. Nesta dissertação, definimos conteúdo
sensível como sexo, violencia fisica extrema, gore ou cenas potencialmente
pertubadoras ao espectador. Apresentamos um conjunto de dados de vídeo
sensível para classificação binária de vídeo (se há conteúdo sensível no vídeo
ou não), contendo 127 mil vídeos anotados, cada um com seus embeddings
visuais e de áudio extraídos. Também treinamos e avaliamos quatro modelos
baseline para a tarefa de detecção de conteúdo sensível em vídeo. O modelo
com melhor desempenho obteve 99 por cento de F2-Score ponderado no nosso subconjunto de testes e 88,83 por cento no conjunto de dados Pornography-2k. / [en] Massive amounts of video are uploaded on video-hosting platforms
every minute. This volume of data presents a challenge in controlling the
type of content uploaded to these video hosting services, for those platforms
are responsible for any sensitive media uploaded by their users. There
has been an abundance of research on methods for developing automatic
detection of sensitive content. In this dissertation, we define sensitive
content as sex, extreme physical violence, gore, or any scenes potentially
disturbing to the viewer. We present a sensitive video dataset for binary
video classification (whether there is sensitive content in the video or not),
containing 127 thousand tagged videos, Each with their extracted audio and
visual embeddings. We also trained and evaluated four baseline models for
the sensitive content detection in video task. The best performing model
achieved 99 percent weighed F2-Score on our test subset and 88.83 percent on the
Pornography-2k dataset.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:59476
Date09 June 2022
CreatorsPEDRO VINICIUS ALMEIDA DE FREITAS
ContributorsSERGIO COLCHER
PublisherMAXWELL
Source SetsPUC Rio
LanguageEnglish
Detected LanguagePortuguese
TypeTEXTO

Page generated in 0.0013 seconds