In the recent years, there has been a rapid development of miniature sensor based wearable devices with broad functionality. Some of these devices are designed to function continuously for weeks with a single battery charge, which requires their power usage to be as low as possible. This can be achieved either through circuit optimization, a more powerful battery, or through optimization of the software controlling the device. This thesis presents an approach to the latter option by the means of a power and energy simulator based on the Open Virtual Platform (OVP). Such a tool can simulate the embedded software and predict the power and energy usage of the system. The result of the simulator could be used in combination with other tools to optimize the software implementation of the system and to lower its overall power and energy consumption.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-168565 |
Date | January 2015 |
Creators | Yankov, Lachezar |
Publisher | KTH, Skolan för informations- och kommunikationsteknik (ICT) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ICT-EX ; 2015:31 |
Page generated in 0.0019 seconds