The fields of System-On-Chip (SOC) and Embedded Systems Design have received a lot of attention in the last years. As part of an effort to increase productivity and reduce the time-to-market of new products, different approaches for Electronic System-Level Design frameworks have been proposed. These different methods promise a transparent co-design of hardware and software without having to focus on the final hardware/software split.
In our work, we focused on enhancing the component database, modeling and synthesis capabilities of the System-On-Chip Environment (SCE). We investigated two different virtual platform emulators (QEMU and OVP) for integration into SCE. Based on a comparative analysis, we opted on integrating the Open Virtual Platforms (OVP) models and tested the enhanced SCE simulation, design and synthesis capabilities with a JPEG encoder application, which uses both custom hardware and software as part of the system.
Our approach proves not only to provide fast functional verification support for designers (10+ times faster than cycle accurate models), but also to offer a good speed/accuracy relationship when compared against integration of cycle accurate or behavioral (host-compiled) models. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2010-05-1257 |
Date | 24 November 2010 |
Creators | Salinas Bomfim, Pablo E. |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.0021 seconds