Orientador: Takaaki Ohishi / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-10T05:34:59Z (GMT). No. of bitstreams: 1
Pereira_JoaquimJoseFantin_M.pdf: 1686812 bytes, checksum: 5ff18327a2f501a5035fbf6c56ae0eda (MD5)
Previous issue date: 2007 / Resumo: A tomada de decisão, em qualquer setor e nos mais diversos níveis, é um processo cada vez mais complexo, principalmente em função do nível de incerteza em relação ao futuro. Neste contexto, a disponibilidade de previsões torna-se um fator importante para uma decisão mais eficaz. As ferramentas de reconhecimento de padrões, por sua vez, são importantes em muitas áreas, tais como nas determinações de comportamentos típicos e em sistemas de controle. Nessa conjuntura, a proposta deste trabalho consistiu em explorar a criação e o uso de uma linguagem de programação visual, denominada Linguagem VisualPREV, de modo a facilitar a concepção e a execução dos modelos de previsão e classificação. Nesta Linguagem, blocos visuais colocados num diagrama (interface visual computacional) representam conceitos envolvidos num processo de modelagem do problema. O modelo pode então ser configurado, executado e armazenado para acesso futuro. Embora essa escolha implique uma perda de vantagens exclusivas da programação em código tradicional, como a maior flexibilidade para programação genérica, por exemplo, a linguagem diminui sensivelmente o tempo de criação dos modelos específicos para tratamento de dados em previsão de séries temporais e reconhecimento de padrões. Em algumas aplicações com dados relevantes, a linguagem foi avaliada com critérios baseados em métricas de usabilidade e os resultados foram discutidos ao longo do trabalho / Abstract : Decision making, in any area and in many different levels, is a process with growing complexity, mainly if you consider the level of uncertainty related to the future. In this context, the possibility of forecasting plays a major role in an efficient decision. On the other hand, pattern recognition tools are important in many areas, like fitting typical behaviors and in control systems, as well. In this context, we propose a visual programming language, called VisualPREV Language, intended to make easier the conception and execution of forecasting and pattern recognition models. Within this language, visual blocks that can be put into a diagram (computational visual interface) represent concepts involved when modeling the processes. These models can be configured, executed and stored for future access. Although these approach implies losing exclusive advantages of traditional programming (like flexibility of generic programming, for example), VisualPREV decreases considerably the amount of time needed for creating specific models for forecasting and pattern recognition. In few applications with relevant data, the language was evaluated based on usability metrics, and the results were discussed throughout the text / Mestrado / Energia Eletrica / Mestre em Engenharia Elétrica
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/259920 |
Date | 07 June 2007 |
Creators | Pereira, Joaquim Jose Fantin |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Ohishi, Takaaki, 1955-, Ballini, Rosangela, Barbosa, Paulo Sergio Franco, Gudwin, Ricardo Ribeiro |
Publisher | [s.n.], Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação, Programa de Pós-Graduação em Engenharia Elétrica |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 124p. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds