In this thesis, a treemap-based interactive clustering algorithm is implemented and evaluated. The treemap's rectangles present scatterplots of dimensionally reduced renderings of clusters. Based on the visual representation, a user makes decisions on splitting clusters with a user-selectable clustering algorithm like k-means or hierarchical clustering. This thesis shows that this implementation is practical for finding hierarchical clusters in the MNIST database. The thesis also demonstrates the possibility of finding sub-clusters within the clusters of the individual digits.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-88044 |
Date | January 2022 |
Creators | Lindström-Åberg, Andreas |
Publisher | Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), Karlstads universitet, Avdelningen för datavetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds