Return to search

Design of low-power error-control code decoder architecture based on reference path generation

In this thesis, the low-power design of two popular error-control code decoders has been presented. It first proposes a low-power Viterbi decoder based on the improved reference path generation method which can lead to significant reduction of the memory accesses during the trace-back operation of the survival memory unit. The use of the reference path has been addressed in the past; this mechanism is further extended in this thesis to take into account the selection of starting states for the trace-back and path prediction operations. Our simulation results show that the best saving ratio of memory access can be up to 92% by choosing the state with the minimum state-metric for both trace-back and path prediction. However, the implementation of our look-ahead path prediction initiated from the minimum state will suffer a lot of area overhead especially for Viterbi applications with large state number. Therefore, this thesis instead realizes a 64-state Viterbi decoder whose path prediction starts from the predicted state obtained from the previous prediction phase. Our implementation results show that the actual power reduction ratio ranges from 31% to 47% for various signal-to-noise ratio settings while the area overhead is about 10%. The second major contribution of this thesis is to apply the similar low-power technique to the design of Soft-Output-Viterbi-Algorithm (SOVA) based Turbo code decoders. Our experimental results show that for eight-state SOVA Turbo code, our reference path generation mechanism can reduce more that 95% memory accesses, which can help saving the overall power consumption by 15.6% with a slight area overhead of 3%.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0214111-180218
Date14 February 2011
CreatorsLin, Wang-Ting
ContributorsShen-Fu Hsiao, Yun-Nan Chang, Chih-Peng Fan
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0214111-180218
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0023 seconds