La texture de l'albumen de blé tendre (Triticum aestivum) est une propriété importante du grain qui affecte son comportement au fractionnement, ainsi que la qualité des produits finis. Elle est définie par la dureté et la vitrosité qui sont deux propriétés différentes du blé. La dureté est reliée à l'adhésion entre les granules d'amidon et la matrice protéique (principaux constituants de l'albumen) qui est contrôlée génétiquement à travers l'état des puroindolines (sauvages ou mutées). La vitrosité est associée à la porosité de l'albumen et varie principalement en fonction des conditions de culture. Le principal objectif de ce travail de recherche est de contribuer à la compréhension du lien entre la texture de l'albumen et le comportement des grains à la mouture, en fonction de la génétique (puroindolines) et des conditions de culture (porosité). Des grains issus de lignées quasi-isogéniques, ne différant que par l'état allélique de la puroindoline b (Pinb-D1a pour les soft et Pinb-D1b pour les hard) et cultivés dans deux endroits différents (grains vitreux et farineux) ont été spécifiquement sélectionnés pour distinguer le rôle respectif des puroindolines et de la porosité sur la microstructure de l'albumen et sur les propriétés mécaniques à l'échelle de l'albumen et d'une population de grains. Cette analyse multi-échelles a permis de préciser que l'effet de la porosité de l'albumen domine sur la microstructure pour les grains farineux, indépendemment de la génétique, et que l'adhésion amidon-protéines est également impliquée dans le cas des grains vitreux. La porosité et l'adhésion entre les constituants de l'albumen sont tous deux responsables des différences observées de propriétés mécaniques, de comportement des grains à la mouture et de propriétés de la farine. A l'échelle nanométrique, nous avons réussi à mesurer les propriétés mécaniques locales de l'amidon et du gluten en associant une méthode originale utilisant la microscopie à force atomique (AFM) avec un modèle de tribologie. Pour la première fois, nous avons montré que la dureté de l'amidon est quatre fois plus élevée que celle du gluten, indépendamment de leur origine génétique. Nous avons aussi montré pour la première fois que les propriétés mécaniques de l'interface entre amidon et protéines étaient dépendantes de l'origine génétique des blés, et plus précisément des puroindolines. Ces résultats confirment que la dureté du grain n'est pas liée aux propriétés mécaniques des constituants du blé mais plutôt à l'interface amidon-protéine. Ces données ont été intégrées par la suite dans un modèle numérique qui permet de prédire le comportement mécanique global des échantillons en fonction du degré d'adhésion entre amidon et protéines, l'assemblage granulaire des particules d'amidon et la teneur en protéines. Ce modèle a permis de mettre en évidence l'effet de l'assemblage des granules d'amidon sur les propriétés mécaniques, qui a été jusqu'ici négligé dans l'évaluation de la vitrosité. / Endosperm texture is one of the most important grain properties for fractionation behaviour and end-use quality of common wheat (Triticum aestivum). Hardness and vitreousness are distinct grain properties that are both responsible of grain texture. Hardness is related to the starch and protein (endosperm main components) adhesion that is genetically controlled depending on the wild or mutated puroindolines. Vitreousness is associated to endosperm porosity and is mainly affected by the growing conditions. The principal aim of this PhD work is to contribute understanding the link between endosperm texture and the grain milling behaviour, depending on the wheat genetic background (puroindolines) and growth conditions (porosity). Near-isogenic lines differing only by the puroindoline b allelic state (Pinb-D1a for soft and Pinb-D1b for hard) and grown in different locations (vitreous and mealy kernels) were specifically selected to analyse the endosperm microstructure and mechanical properties at the kernel and grain population scales. The multi-scale analysis pointed out, in mealy grains, the dominant effect of porosity on the endosperm microstructure whatever the genetic background, and showed that the starch-protein adhesion is also involved in vitreous kernels. Both endosperm porosity and starch-protein adhesion are responsible for the distinct endosperm mechanical properties, milling behaviour and flour properties. At the nanoscale, an original nanoscratching method using Atomic Force Microscopy (AFM) was associated with a tribological model to measure the mechanical properties of wheat endosperm main components. For the first time, the hardness of starch was found four fold higher than that of gluten, whatever the genetic origin. Most importantly, the AFM methodology clearly revealed differences in the mechanical properties of starch-protein interface between hard and soft grains. These results confirm that grain hardness is related to the mechanical properties of the starch-protein interface and that the puroindolines nature is involved in these properties. The nano-mechanical properties of starch and proteins determined by AFM were integrated in the numerical modelling to predict wheat fractionation according to the starch-protein adhesion, the starch particles assembly and the protein content. The numerical model highlighted the effect of the starch granular assembly on wheat grains mechanical properties, which has not been taken into account before to evaluate the effect of vitreousness.
Identifer | oai:union.ndltd.org:theses.fr/2013NSAM0019 |
Date | 19 November 2013 |
Creators | Chichti, Emna |
Contributors | Montpellier, SupAgro, Lullien, Valérie, Delenne, Jean-Yves |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.1183 seconds