• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-scale approach for understanding the link between Triticum aestivum grain texture and milling behaviour : focus on the endosperm microstructure and local nano-mechanical properties / Approche multi-échelles pour comprendre le lien entre la texture des grains de blé tendre (Triticum aestivum) et leur comportement au fractionnement par voie sèche : focus sur les propriétés nano-mécaniques et la microstructure de l’albumen

Chichti, Emna 19 November 2013 (has links)
La texture de l'albumen de blé tendre (Triticum aestivum) est une propriété importante du grain qui affecte son comportement au fractionnement, ainsi que la qualité des produits finis. Elle est définie par la dureté et la vitrosité qui sont deux propriétés différentes du blé. La dureté est reliée à l'adhésion entre les granules d'amidon et la matrice protéique (principaux constituants de l'albumen) qui est contrôlée génétiquement à travers l'état des puroindolines (sauvages ou mutées). La vitrosité est associée à la porosité de l'albumen et varie principalement en fonction des conditions de culture. Le principal objectif de ce travail de recherche est de contribuer à la compréhension du lien entre la texture de l'albumen et le comportement des grains à la mouture, en fonction de la génétique (puroindolines) et des conditions de culture (porosité). Des grains issus de lignées quasi-isogéniques, ne différant que par l'état allélique de la puroindoline b (Pinb-D1a pour les soft et Pinb-D1b pour les hard) et cultivés dans deux endroits différents (grains vitreux et farineux) ont été spécifiquement sélectionnés pour distinguer le rôle respectif des puroindolines et de la porosité sur la microstructure de l'albumen et sur les propriétés mécaniques à l'échelle de l'albumen et d'une population de grains. Cette analyse multi-échelles a permis de préciser que l'effet de la porosité de l'albumen domine sur la microstructure pour les grains farineux, indépendemment de la génétique, et que l'adhésion amidon-protéines est également impliquée dans le cas des grains vitreux. La porosité et l'adhésion entre les constituants de l'albumen sont tous deux responsables des différences observées de propriétés mécaniques, de comportement des grains à la mouture et de propriétés de la farine. A l'échelle nanométrique, nous avons réussi à mesurer les propriétés mécaniques locales de l'amidon et du gluten en associant une méthode originale utilisant la microscopie à force atomique (AFM) avec un modèle de tribologie. Pour la première fois, nous avons montré que la dureté de l'amidon est quatre fois plus élevée que celle du gluten, indépendamment de leur origine génétique. Nous avons aussi montré pour la première fois que les propriétés mécaniques de l'interface entre amidon et protéines étaient dépendantes de l'origine génétique des blés, et plus précisément des puroindolines. Ces résultats confirment que la dureté du grain n'est pas liée aux propriétés mécaniques des constituants du blé mais plutôt à l'interface amidon-protéine. Ces données ont été intégrées par la suite dans un modèle numérique qui permet de prédire le comportement mécanique global des échantillons en fonction du degré d'adhésion entre amidon et protéines, l'assemblage granulaire des particules d'amidon et la teneur en protéines. Ce modèle a permis de mettre en évidence l'effet de l'assemblage des granules d'amidon sur les propriétés mécaniques, qui a été jusqu'ici négligé dans l'évaluation de la vitrosité. / Endosperm texture is one of the most important grain properties for fractionation behaviour and end-use quality of common wheat (Triticum aestivum). Hardness and vitreousness are distinct grain properties that are both responsible of grain texture. Hardness is related to the starch and protein (endosperm main components) adhesion that is genetically controlled depending on the wild or mutated puroindolines. Vitreousness is associated to endosperm porosity and is mainly affected by the growing conditions. The principal aim of this PhD work is to contribute understanding the link between endosperm texture and the grain milling behaviour, depending on the wheat genetic background (puroindolines) and growth conditions (porosity). Near-isogenic lines differing only by the puroindoline b allelic state (Pinb-D1a for soft and Pinb-D1b for hard) and grown in different locations (vitreous and mealy kernels) were specifically selected to analyse the endosperm microstructure and mechanical properties at the kernel and grain population scales. The multi-scale analysis pointed out, in mealy grains, the dominant effect of porosity on the endosperm microstructure whatever the genetic background, and showed that the starch-protein adhesion is also involved in vitreous kernels. Both endosperm porosity and starch-protein adhesion are responsible for the distinct endosperm mechanical properties, milling behaviour and flour properties. At the nanoscale, an original nanoscratching method using Atomic Force Microscopy (AFM) was associated with a tribological model to measure the mechanical properties of wheat endosperm main components. For the first time, the hardness of starch was found four fold higher than that of gluten, whatever the genetic origin. Most importantly, the AFM methodology clearly revealed differences in the mechanical properties of starch-protein interface between hard and soft grains. These results confirm that grain hardness is related to the mechanical properties of the starch-protein interface and that the puroindolines nature is involved in these properties. The nano-mechanical properties of starch and proteins determined by AFM were integrated in the numerical modelling to predict wheat fractionation according to the starch-protein adhesion, the starch particles assembly and the protein content. The numerical model highlighted the effect of the starch granular assembly on wheat grains mechanical properties, which has not been taken into account before to evaluate the effect of vitreousness.
2

Dynamique d’assemblage des protéines de réserve et du remplissage du grain de blé dur / Dynamic of the assembly of storage proteins and grain filling of durum wheat.

Simoes Larraz Ferreira, Mariana 17 May 2011 (has links)
Le blé dur, du fait de sa vitrosité et de sa richesse en protéines est particulièrement adapté àla fabrication des pâtes alimentaires. Cette céréale, largement cultivée dans le bassinméditerranéen, est fréquemment soumise à des stress hydriques et thermiques. Les objectifsde cette thèse ont été d'approfondir les connaissances sur les modalités d'accumulation etd'assemblage des protéines de réserve au cours du développement du grain. Un suivi fin duremplissage du grain, de la morphologie des corps protéiques, des changements d'état redox etde la distribution en taille des polymères de gluténines a été réalisé. L'influence, sur cesdifférents paramètres, de températures élevées appliquées à différents stades dedéveloppement du grain a été étudiée.En privilégiant l'accumulation des protéines au détriment de l'amidon, le stress thermiquejoue un rôle non négligeable dans l'obtention de grains vitreux et à fortes teneurs en protéines.L'arrêt de la croissance du grain, observé à 45% de teneur en eau, est précédé de la mise enplace de la matrice protéique. L'accumulation de la matière sèche apparaît étroitement liée à ladynamique de l'eau, confirmant le lien entre teneur en eau et poids final du grain. Au cours duremplissage du grain, les températures élevées exercent un effet significatif sur la formationdes polymères de gluténines insolubles dans le SDS. Leur formation n'intervient qu'en fin dedessiccation et en deçà de 30% de teneur en eau. La durée de cette phase ultime d'oxydation etd'assemblage des polymères de gluténines a été reliée à la teneur en protéines.L'évolution du statut redox du grain montre qu'une accumulation massive de polymères degluténines intervient juste avant l'entrée en dessiccation du grain qui coïncide avecl'effondrement de l'ascorbate dans le grain. Coïncidant avec cette oxydation manifeste, unphénomène de glutathionylation des protéines a été détecté avec une rupture de l'activité de laCAT. Au cours de la dessiccation, les activités de la SOD et de la GR augmentent de façonsignificative. Cette synthèse tardive pourrait se produire au niveau de la couche à aleurone etdu germe en réponse à l'oxydation massive de l'albumen.Enfin, nous avons analysé le couplage entre oxydation des thiols protéiques et croissance entaille des polymères de gluténines. Très précocement, les sous-unités de gluténiness'assemblent sous forme d'oligomères partiellement réduits. Durant le remplissage du grain,une oxydation massive des thiols intervient avec la formation de polymères majoritairementcomposés de SG-HPM sur lesquels viendraient se fixer les SG-FPM. Au cours de la dessiccation,la taille des polymères augmente. Les structures polymériques formées au cours del'élaboration du grain possèdent un nombre de cystéines réduites élevé et incompatible avecun modèle d'assemblage linéaire. Les résultats obtenus nous permettent de proposer unrepliement tardif des SG-FPM, postérieur à leur insertion dans les assemblages oligomériques.Ils nous amènent à mettre en avant le rôle du glutathion comme co-facteur de la genèse despolymères, à l'opposé des thèses classiques qui en font plutôt un inhibiteur de la croissance entaille des polymères de gluténines. / Durum wheat is particularly recognized as the most suitable raw material for pasta makingdue to its vitreousness and its high protein content. This cereal is commonly grown inMediterranean environment and then frequently submitted to high temperature and waterstress. The aim of this thesis was to better understand the accumulation and assembly ofstorage proteins during the grain development. Evaluation of the grain filling, the morphologyof protein bodies, the redox status and the size distribution of glutenin polymers were carriedout. The effect of high temperatures applied at different stages of the grain development onthese parameters was studied.By favouring protein accumulation at the expense of starch, heat stress appeared essentialto obtain vitreous grains and high protein content. The arrest of grain growth observed at 45%grain water content is preceded by the formation of a continuous protein matrix. The dry massaccumulation is closely related to water dynamics, confirming the link between water contentand final grain weight. During grain filling, high temperatures have a significant effect on theformation of SDS-insoluble glutenin polymers. It occurred when grain water concentrationdropped below 30%. The duration of this final stage of oxidation and assembly of gluteninpolymers was related to protein content.Changes in the grain redox status showed an accumulation of glutenin polymers mainlyoccurring before the onset of grain desiccation phase and coinciding with the ascorbateoxidation. This clear oxidation coincided also with the glutathionylation of proteins and thedrop of the CAT activity. During desiccation, the activities of SOD and GR increased significantly.This late synthesis could occur in the aleurone layer and germ in response to massive oxidationof the endosperm cells.Finally, we evaluated the coupling between protein thiol oxidation and size increase ofglutenin polymers. In the early stages, glutenin subunits assembled as oligomers partiallyreduced. During grain filling, a strong thiol oxidation took place with the formation of polymersmainly composed of HMW-GS associated with LMW-GS branching. The polymer size increasedduring desiccation. The polymeric structures obtained during the grain development presenteda high number of reduced cysteines inconsistent with a linear concatenation model ofassembly. It allowed us to propose that the folding of LMW-GS is a late event, subsequent totheir insertion into oligomeric assemblies. These results highlighted the role of glutathione asco-factor in the polymers formation, contrasting with the common assumption that considers itas an inhibitor of the size increase of glutenin polymers.

Page generated in 0.5517 seconds